完全理解Python迭代对象、迭代器、生成器

简介:

在了解Python的数据结构时,容器(container)、可迭代对象(iterable)、迭代器(iterator)、生成器(generator)、列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一起,难免让初学者一头雾水,我将用一篇文章试图将这些概念以及它们之间的关系捋清楚。

容器(container)

容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in, not in关键字判断元素是否包含在容器中。通常这类数据结构把所有的元素存储在内存中(也有一些特例,并不是所有的元素都放在内存,比如迭代器和生成器对象)在Python中,常见的容器对象有:

  • list, deque, ….
  • set, frozensets, ….
  • dict, defaultdict, OrderedDict, Counter, ….
  • tuple, namedtuple, …
  • str

容器比较容易理解,因为你就可以把它看作是一个盒子、一栋房子、一个柜子,里面可以塞任何东西。从技术角度来说,当它可以用来询问某个元素是否包含在其中时,那么这个对象就可以认为是一个容器,比如 list,set,tuples都是容器对象:


 
 
  1. >>> assert 1 in [1, 2, 3]      # lists 
  2.  
  3. >>> assert 4 not in [1, 2, 3] 
  4.  
  5. >>> assert 1 in {1, 2, 3}      # sets 
  6.  
  7. >>> assert 4 not in {1, 2, 3} 
  8.  
  9. >>> assert 1 in (1, 2, 3)      # tuples 
  10.  
  11. >>> assert 4 not in (1, 2, 3)  

询问某元素是否在dict中用dict的中key:


 
 
  1. >>> d = {1: 'foo', 2: 'bar', 3: 'qux'
  2.  
  3. >>> assert 1 in d 
  4.  
  5. >>> assert 'foo' not in d # 'foo' 不是dict中的元素  

询问某substring是否在string中:


 
 
  1. >>> s = 'foobar' 
  2.  
  3. >>> assert 'b' in s 
  4.  
  5. >>> assert 'x' not in s 
  6.  
  7. >>> assert 'foo' in s  

尽管绝大多数容器都提供了某种方式来获取其中的每一个元素,但这并不是容器本身提供的能力,而是可迭代对象赋予了容器这种能力,当然并不是所有的容器都是可迭代的,比如:Bloom filter,虽然Bloom filter可以用来检测某个元素是否包含在容器中,但是并不能从容器中获取其中的每一个值,因为Bloom filter压根就没把元素存储在容器中,而是通过一个散列函数映射成一个值保存在数组中。

可迭代对象(iterable)

刚才说过,很多容器都是可迭代对象,此外还有更多的对象同样也是可迭代对象,比如处于打开状态的files,sockets等等。但凡是可以返回一个迭代器的对象都可称之为可迭代对象,听起来可能有点困惑,没关系,先看一个例子:


 
 
  1. >>> x = [1, 2, 3] 
  2.  
  3. >>> y = iter(x) 
  4.  
  5. >>> z = iter(x) 
  6.  
  7. >>> next(y) 
  8.  
  9.  
  10. >>> next(y) 
  11.  
  12.  
  13. >>> next(z) 
  14.  
  15.  
  16. >>> type(x) 
  17.  
  18. <class 'list'
  19.  
  20. >>> type(y) 
  21.  
  22. <class 'list_iterator'>  

这里x是一个可迭代对象,可迭代对象和容器一样是一种通俗的叫法,并不是指某种具体的数据类型,list是可迭代对象,dict是可迭代对象,set也是可迭代对象。y和z是两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。迭代器有一种具体的迭代器类型,比如list_iterator,set_iterator。可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。

当运行代码:


 
 
  1. x = [1, 2, 3] 
  2.  
  3. for elem in x: 
  4.  
  5. ...  

实际执行情况是:

反编译该段代码,你可以看到解释器显示地调用GET_ITER指令,相当于调用iter(x),FOR_ITER指令就是调用next()方法,不断地获取迭代器中的下一个元素,但是你没法直接从指令中看出来,因为他被解释器优化过了。


 
 
  1. >>> import dis 
  2.  
  3. >>> x = [1, 2, 3] 
  4.  
  5. >>> dis.dis('for _ in x: pass'
  6.  
  7.   1           0 SETUP_LOOP              14 (to 17) 
  8.  
  9.               3 LOAD_NAME                0 (x) 
  10.  
  11.               6 GET_ITER 
  12.  
  13.         >>    7 FOR_ITER                 6 (to 16) 
  14.  
  15.              10 STORE_NAME               1 (_) 
  16.  
  17.              13 JUMP_ABSOLUTE            7 
  18.  
  19.         >>   16 POP_BLOCK 
  20.  
  21.         >>   17 LOAD_CONST               0 (None) 
  22.  
  23.              20 RETURN_VALUE  

迭代器(iterator)

那么什么迭代器呢?它是一个带状态的对象,他能在你调用next()方法的时候返回容器中的下一个值,任何实现了__iter__和__next__()(python2中实现next())方法的对象都是迭代器,__iter__返回迭代器自身,__next__返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常,至于它们到底是如何实现的这并不重要。

所以,迭代器就是实现了工厂模式的对象,它在你每次你询问要下一个值的时候给你返回。有很多关于迭代器的例子,比如itertools函数返回的都是迭代器对象。

生成无限序列:


 
 
  1. >>> from itertools import count 
  2.  
  3. >>> counter = count(start=13) 
  4.  
  5. >>> next(counter) 
  6.  
  7. 13 
  8.  
  9. >>> next(counter) 
  10.  
  11. 14  

从一个有限序列中生成无限序列:


 
 
  1. >>> from itertools import cycle 
  2.  
  3. >>> colors = cycle(['red''white''blue']) 
  4.  
  5. >>> next(colors) 
  6.  
  7. 'red' 
  8.  
  9. >>> next(colors) 
  10.  
  11. 'white' 
  12.  
  13. >>> next(colors) 
  14.  
  15. 'blue' 
  16.  
  17. >>> next(colors) 
  18.  
  19. 'red'  

从无限的序列中生成有限序列:


 
 
  1. >>> from itertools import islice 
  2.  
  3. >>> colors = cycle(['red''white''blue']) # infinite 
  4.  
  5. >>> limited = islice(colors, 0, 4) # finite 
  6.  
  7. >>> for x in limited: 
  8.  
  9. ... print(x) 
  10.  
  11. red 
  12.  
  13. white 
  14.  
  15. blue 
  16.  
  17. red  

为了更直观地感受迭代器内部的执行过程,我们自定义一个迭代器,以斐波那契数列为例:


 
 
  1. class Fib: 
  2.  
  3.     def __init__(self): 
  4.  
  5.         self.prev = 0 
  6.  
  7.         self.curr = 1 
  8.  
  9.   
  10.  
  11.     def __iter__(self): 
  12.  
  13.         return self 
  14.  
  15.   
  16.  
  17.     def __next__(self): 
  18.  
  19.         value = self.curr 
  20.  
  21.         self.curr += self.prev 
  22.  
  23.         self.prev = value 
  24.  
  25.         return value 
  26.  
  27.   
  28.  
  29. >>> f = Fib() 
  30.  
  31. >>> list(islice(f, 0, 10)) 
  32.  
  33. [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]  

Fib既是一个可迭代对象(因为它实现了__iter__方法),又是一个迭代器(因为实现了__next__方法)。实例变量prev和curr用户维护迭代器内部的状态。每次调用next()方法的时候做两件事:

  • 为下一次调用next()方法修改状态
  • 为当前这次调用生成返回结果

迭代器就像一个懒加载的工厂,等到有人需要的时候才给它生成值返回,没调用的时候就处于休眠状态等待下一次调用。

生成器(generator)

生成器算得上是Python语言中最吸引人的特性之一,生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写__iter__()和__next__()方法了,只需要一个yiled关键字。 生成器一定是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:


 
 
  1. def fib(): 
  2.  
  3.     prev, curr = 0, 1 
  4.  
  5.     while True
  6.  
  7.         yield curr 
  8.  
  9.         prev, curr = curr, curr + prev 
  10.  
  11.   
  12.  
  13. >>> f = fib() 
  14.  
  15. >>> list(islice(f, 0, 10)) 
  16.  
  17. [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]  

fib就是一个普通的python函数,它特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。

生成器在Python中是一个非常强大的编程结构,可以用更少地中间变量写流式代码,此外,相比其它容器对象它更能节省内存和CPU,当然它可以用更少的代码来实现相似的功能。现在就可以动手重构你的代码了,但凡看到类似:


 
 
  1. def something(): 
  2.  
  3.     result = [] 
  4.  
  5.     for ... in ...: 
  6.  
  7.         result.append(x) 
  8.  
  9.     return result  

都可以用生成器函数来替换:


 
 
  1. def iter_something(): 
  2.  
  3. for ... in ...: 
  4.  
  5. yield x  

生成器表达式(generator expression)

生成器表达式是列表推倒式的生成器版本,看起来像列表推导式,但是它返回的是一个生成器对象而不是列表对象。


 
 
  1. >>> a = (x*x for x in range(10)) 
  2.  
  3. >>> a 
  4.  
  5. <generator object <genexpr> at 0x401f08> 
  6.  
  7. >>> sum(a) 
  8.  
  9. 285  

总结

  • 容器是一系列元素的集合,str、list、set、dict、file、sockets对象都可以看作是容器,容器都可以被迭代(用在for,while等语句中),因此他们被称为可迭代对象。
  • 可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。
  • 迭代器持有一个内部状态的字段,用于记录下次迭代返回值,它实现了__next__和__iter__方法,迭代器不会一次性把所有元素加载到内存,而是需要的时候才生成返回结果。
  • 生成器是一种特殊的迭代器,它的返回值不是通过return而是用yield。

作者:佚名
来源:51CTO
相关文章
|
8天前
|
存储 数据处理 Python
Python如何显示对象的某个属性的所有值
本文介绍了如何在Python中使用`getattr`和`hasattr`函数来访问和检查对象的属性。通过这些工具,可以轻松遍历对象列表并提取特定属性的所有值,适用于数据处理和分析任务。示例包括获取对象列表中所有书籍的作者和检查动物对象的名称属性。
19 2
|
22天前
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
31 3
|
27天前
|
大数据 数据处理 开发者
Python中的迭代器和生成器:不仅仅是语法糖####
本文探讨了Python中迭代器和生成器的深层价值,它们不仅简化代码、提升性能,还促进了函数式编程风格。通过具体示例,揭示了这些工具在处理大数据、惰性求值及资源管理等方面的优势。 ####
|
2月前
|
存储 索引 Python
|
1月前
|
JavaScript 前端开发 算法
python中的列表生成式和生成器
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生的天地。通过自学前端技术2年半,现正向全栈开发迈进。如果你从我的文章中受益,欢迎关注,我将持续更新高质量内容,你的支持是我前进的动力!🎉🎉🎉
24 0
|
2月前
|
Python
【10月更文挑战第18天】「Mac上学Python 29」基础篇10 - 循环结构与迭代控制
在Python中,循环结构是控制程序执行的重要工具。通过学习本篇内容,您将掌握如何使用for循环和while循环来高效地处理重复任务,并了解break、continue和else的使用方式。同时,我们还会探索嵌套循环和典型应用场景中的实际应用。
45 2
|
1月前
|
存储 程序员 数据处理
深入理解Python中的生成器与迭代器###
本文将探讨Python中生成器与迭代器的核心概念,通过对比分析二者的异同,结合具体代码示例,揭示它们在提高程序效率、优化内存使用方面的独特优势。生成器作为迭代器的一种特殊形式,其惰性求值的特性使其在处理大数据流时表现尤为出色。掌握生成器与迭代器的灵活运用,对于提升Python编程技能及解决复杂问题具有重要意义。 ###
|
7月前
|
运维 Shell Sentinel
第八章 Python可迭代对象、迭代器和生成器
第八章 Python可迭代对象、迭代器和生成器
|
存储 Python 容器
理解 Python 迭代对象、迭代器、生成器
理解 Python 迭代对象、迭代器、生成器
153 0
|
Python 容器
【Python零基础入门篇 · 20】:可迭代对象和迭代器的转换、自定义迭代器类、异常类、生成器
【Python零基础入门篇 · 20】:可迭代对象和迭代器的转换、自定义迭代器类、异常类、生成器
152 0
【Python零基础入门篇 · 20】:可迭代对象和迭代器的转换、自定义迭代器类、异常类、生成器