CVPR 2017精彩论文解读:综合使用多形态核磁共振数据的3D生物医学图像分割方法-阿里云开发者社区

开发者社区> 云栖大讲堂> 正文

CVPR 2017精彩论文解读:综合使用多形态核磁共振数据的3D生物医学图像分割方法

简介:
+关注继续查看

雷锋网(公众号:雷锋网) AI 科技评论按:计算机视觉盛会 CVPR 2017已经结束了,雷锋网 AI 科技评论带来的多篇大会现场演讲及收录论文的报道相信也让读者们对今年的 CVPR 有了一些直观的感受。

论文的故事还在继续

相对于 CVPR 2017收录的共783篇论文,即便雷锋网 AI 科技评论近期挑选报道的获奖论文、业界大公司论文等等是具有一定特色和代表性的,也仍然只是沧海一粟,其余的收录论文中仍有很大的价值等待我们去挖掘,生物医学图像、3D视觉、运动追踪、场景理解、视频分析等方面都有许多新颖的研究成果。

所以我们继续邀请了宜远智能的刘凯博士对生物医学图像方面的多篇论文进行解读,延续之前最佳论文直播讲解活动,从8月1日起陆续解读4篇不同的论文。此次是4篇中的第2篇。

刘凯博士是宜远智能的总裁兼联合创始人,有着香港浸会大学的博士学位,曾任联想(香港)主管研究员、腾讯高级工程师。半个月前宜远智能的团队刚刚在阿里举办的天池 AI 医疗大赛上从全球2887支参赛队伍中脱颖而出取得了第二名的优异成绩。

最佳论文直播讲解 #04

分享论文:「Joint Sequence Learning and Cross-Modality Convolution for 3D Biomedical Segmentation」

时间:8 月 4 日 (周五) 20:00

地点: AI 研习社微信群

论文简介

刘凯博士要为我们解读的生物医学图像论文中的第二篇是「Joint Sequence Learning and Cross-Modality Convolution for 3D Biomedical Segmentation」(用于三维生物医学分割的合并序列学习和多形态卷积)。它主要解决了一个三维生物医学图像分割中重要问题:如何综合使用多种形态的 MRI 数据进行区域分割。

论文简介:深度卷积神经网络这样的深度学习模型已经在三维生物医学分割任务中得到广泛应用,并取得了顶尖的表现。现在大多数的3D医学图像分割方法都只用了一个形态或把多个形态堆起来变成不同的通道。为了更好地平衡多形态的应用需求,论文中提出了一个包含交叉形态卷积层(cross-modality convolution layer)的深度编码-解码的网络结构(deep encoder-decoder structure)来合并核磁共振的不同形态,还利用卷积LSTM来对2D切片序列建模,并且把多形态卷积和LSTM网络结合在一起,做到端到端的学习。为了防止收敛到某一特定的类,论文中使用了权重策略和两个阶段的训练来处理类不均匀的情况。基于BRATS-2015数据集的实验结果显示论文中所提的方法比目前顶尖的生物医学分割方法表现更好。

观看直播或加群

长按识别或手机扫描下方二维码,进入 AI研习社(公众号:okweiwu)微信交流群,8月4日(周五)晚八点,活动准时开始!

CVPR 2017精彩论文解读:综合使用多形态核磁共振数据的3D生物医学图像分割方法

CVPR 2017相关学术内容的报道并未结束,请心系学术的各位继续关注雷锋网 AI 科技评论的后续文章。

相关文章:

年度最精彩研究,CVPR 2017六篇最佳论文介绍(附打包下载)| CVPR 2017

Active Learning: 一个降低深度学习时间,空间,经济成本的解决方案|CVPR 2017

CVPR 2017精彩论文解读:显著降低模型训练成本的主动增量学习

CVPR 2017最佳论文作者解读:DenseNet 的“what”、“why”和“how”|CVPR 2017

本文作者:杨晓凡

本文转自雷锋网禁止二次转载,原文链接

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
RecSys提前看 | 深度学习在推荐系统中的最新应用
作为推荐系统的顶会,RecSys 一如既往受到了业界的广泛关注。与其他机器学习会议相比,RecSys 一向重视解决实际的问题,即结合在实际应用场景中推荐系统性能提升、效果提高等问题提出设计策略和算法解决方案等。随着深度学习研究的进一步深入,深度学习在推荐系统中的应用依然是研究热点之一,本次会议中图神经网络(Graph Neural Network,GNN)、经典深度学习模型都有所应用及改进。
5 0
TensorFlow 1.x最后一更、Android 10最新特性,这是谷歌开发者日
教程、体验、实战?谷歌开发者日能满足你对开发工具与开发体验的所有好奇心。
5 0
商汤自研训练框架SenseParrots首次亮相,林达华全面解读
8 月底,在机器之心承办的 WAIC 2019 世界人工智能大会上,商汤科技联合创始人林达华教授首次对商汤自研的深度学习框架 SenseParrots 进行了系统性介绍,也畅谈了对 AI 技术未来发展的看法。
7 0
DARTS+:DARTS 搜索为何需要早停?
近日,华为诺亚 方舟实验室的作者们提出一种可微分的神经网络架构搜索算法 DARTS+,将早停机制(early stopping)引入到原始的 DARTS[1] 算法中,不仅减小了 DARTS 搜索的时间,而且极大地提升了 DARTS 的性能。相关论文《DARTS+: Improved Differentiable Architecture Search with Early Stopping》已经公开(相关代码稍后也会开源)。
5 0
AlphaStar被职业玩家戏耍:在星际2上,人工智能无计可施
今年 1 月,谷歌旗下人工智能科技公司 DeepMind 的「星际争霸 2」人工智能 AlphaStar 曾与人类职业玩家展开了现场对决,并遗憾落败。7 个多月过去了,AI 在「星际争霸」上有什么进展?它现在能否像 DeepMind 所宣称的那样达到职业水平?
7 0
当推荐遇到社交:美图的推荐算法设计优化实践
本文是美图高级算法专家汤斌的一篇文章,重点介绍了社交网络背景下推荐算法面临的挑战,以及应对的方法。
5 0
【大学四年自学Java的学习路线】写了一个月,这是一份最适合普通大众、非科班的路线,祝你零基础快速找到一份满意的工作(2)
【大学四年自学Java的学习路线】写了一个月,这是一份最适合普通大众、非科班的路线,祝你零基础快速找到一份满意的工作
4 0
超多,超快,超强!百度飞桨发布工业级图像分割利器PaddleSeg
近日,飞桨官方发布了工业级图像分割模型库 PaddleSeg,给开发者带来诚意满满的三重超值惊喜:①一次性开源 15 个官方支持的图像分割领域主流模型,大礼包带来大满足。②多卡训练速度比对标产品快两倍,工业级部署能力,时间节省超痛快。③揭秘包揽了 CVPR2019 LIP 挑战赛人体解析任务大满贯的三冠王 ACE2P 预测模型关键技术,带你一步体验世界领先水平效果。
5 0
意念加AI算法「复原」每个手指,智能义肢登上Nature子刊封面
使用「意念」控制机械,让肢体缺失的残疾人过上正常人的生活,这听起来像是出现在电影中的场景。最近,瑞士洛桑联邦理工学院(EPFL)展示的新技术却让科幻变成了现实,他们的研究还登上了最新一期自然杂志子刊《Nature Machine Intelligence》的封面。
6 0
CCKS 2019 | 百度CTO王海峰详解知识图谱与语义理解
8 月 24 日至 27 日在杭州召开的 2019 年全国知识图谱与语义计算大会(CCKS 2019)上,百度 CTO 王海峰发表了题为《知识图谱与语义理解》的演讲。
4 0
+关注
云栖大讲堂
擅长前端领域,欢迎各位热爱前端的朋友加入我们( 钉钉群号:23351485)关注【前端那些事儿】云栖号,更多好文持续更新中!
3892
文章
1754
问答
来源圈子
更多
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载