CVPR 2022|快手联合中科院自动化所提出基于Transformer的图像风格化方法

简介: CVPR 2022|快手联合中科院自动化所提出基于Transformer的图像风格化方法
本文提出了一种基于 Transformer 的图像风格迁移方法 ,我们希望该方法能推进图像风格化的前沿研究以及 Transformer 在视觉尤其是图像生成领域 的应用。



图像风格化是一个有趣且实用的课题,它可以使用参考的风格图像来呈现内容图像,多年以来在学术界被广泛研究,并已在包括短视频领域在内的业界得到大规模的落地应用。例如,移动互联网用户可以通过快手主站、极速版、一甜相机和快影等一系列 APP,体验包括手绘、水彩、油画和 Q 版萌系风格在内的各种人像风格化特效。

传统的基于纹理合成的风格化方法可以生成生动的风格化图像,但由于包含笔画外观和绘画过程的建模,计算起来很复杂。随后,研究人员聚焦于基于卷积神经网络的神经风格化。基于优化的风格化方法参照内容图像与风格图像,不断迭代优化生成结果。按照编码器 - 风格化模块 - 解码器的设计,任意风格化方法利用端到端的方式,根据风格图片调整内容图片的二阶统计信息,可以高效地生成风格化结果。但是,由于对内容和风格之间关系的建模能力有限,这些方法在很多情况下不能取得令人满意的结果。为了克服这一问题,一些研究方法应用自注意机制来改进风格化结果。

目前主流的的风格化方法一般利用卷积神经网络学习风格和内容表示。由于卷积运算的感受野有限,只有卷积网络比较深,才能捕获图片的长程依赖关系。但是,网络深度的增加会导致图片特征分辨率降低和细节的丢失。细节的缺失体现在风格化结果中就是会影响内容结构的保存和风格模式的显示。如图 1(a) 所示,基于卷积神经网络的风格化算法在特征提取过程中忽略了一些细节,网络浅层关注局部特征,深层通过整合局部信息才能获取全局信息。此外,有研究工作发现典型的基于 CNN 的风格化方法获取的内容表示是不准确的,会导致内容泄漏的问题: 经过几轮重复的风格化操作,风格化结果中几乎不能保留任何原始输入的内容结构信息。

图 1 (a)基于 CNN 的风格化中间层可视化结果;(b)我们的方法中间层可视化结果随着 Transformer 在自然语言处理 ( Natural Language Processing, NLP) 领域的成功,基于 Transformer 的架构已被用于各种视觉任务。Transformer 应用 于计算机视觉的优点有两个:首先,在自注意机制的帮助下,Transformer 可以很容易地学习输入的全局信息,从而在每一层都可以获得对输入的整体的理解; 其次,Transformer 是一种关系建模的结构,不同层可以提取相似的结构信息 (如图 1(b) 所示)。因此,Transformer 具有较强的特征表示能力,可以避免特征提取过程中细节的丢失,并能很好地保存生成的结构。

本文针对基于 CNN 的风格化方法存在的内容表达存在偏差的问题,提出了一种新颖的图像风格化算法,即 StyTr^2。方法
为了利用 Transformer 捕获长期依赖关系的能力来实现图像风格化,本文设计了图 2 中结构,模型主要包括三部分:内容 Transformer 编码器,风格 Transformer 编码器和 Transformer 解码器。内容 Transformer 编码器和风格 Transformer 编码器分别用来编码内容域和风格域的图片的长程信息,这种编码方式可以有效避免细节丢失问题。Transformer 解码器用来将内容特征转换为带有风格图片特征的风格化结果。

图 2 网络结构

此外,本文针对传统位置编码提出两个重要问题。第一,对于图像生成任务,在计算 PE(位置编码)时,是否应该考虑图像语义? 传统的 PE 是根据按照逻辑排序的句子来设计的,而图像序列是根据图像内容语义来组织的。假设两个图像补丁之间的距离为 d(.,.) 。如图 3(a) 右边部分所示,d((0 , 3 ), (1 , 3 )) (红色和绿色块) 之间的差异与 d(( 0 , 3 ), (3 , 3 )) (红色和青色 块) 之间的差异应该是相似的,因为风格化任务要求相似的内容补丁有相似的风格化结果。第二,当输入图像尺寸呈指数级增大时,传统的正弦位置编码是否仍然适用于视觉任务? 如 3(a) 所示,当图像大小发生变化时,相同语义位置的补丁 (用蓝色小矩形表示) 之间的相对距离会发生显著变化,这不适合视觉任务中的多尺度输入要求。

图 3  CAPE 计算示意图


为此,本文提出了内容感知的位置编码 (Content-Aware Positional Encoding,CAPE),它具有尺度不变且与内容语义相关的特点,更适合于风格化任务。

结果展示

如图 4 所示,与 state-of-the-art 方法相比,StyTr^2 利用了基于 Transformer 的网络,具有更好的特征表示能力,捕获输入图像的长期依赖关系,并避免丢失内容和风格细节。因此,本文方法的结果可以实现高质量的风格化,使结果同时保持良好的内容结构和丰富的风格模式。

图 4 风格化结果比较

图 5 展示了第 1 轮和第 20 轮的风格化结果。首先,比较第一轮的风格化结果。基于 CNN 的方法生成的结果内容结构受到了不同程度的破坏,但本文的结果仍然具有清晰的内容结构。虽然 ArtFlow 生成的结果保持了清晰的内容结构,但风格化的效果并不令人满意 (例如,边缘缺陷和不合适的样式模式)。其次,随着风格化次数的增加,基于 CNN 的方法生成的内容结构趋于模糊,而我们的方法生成的内容结构仍然是清晰的。

图 5 多轮风格化结果比较

相关文章
|
2月前
|
监控 Devops 持续交付
掌握 GitOps:实现 DevOps 自动化的现代方法
【10月更文挑战第19天】GitOps 是一种基于 Git 仓库管理应用配置和集群状态的现代化 DevOps 方法,通过自动化工具实现声明式配置和持续部署。本文介绍了 GitOps 的核心概念、优势、挑战及实施的最佳实践,帮助团队提高部署效率和系统可靠性。
|
2月前
|
测试技术 Python
自动化测试项目学习笔记(三):Unittest加载测试用例的四种方法
本文介绍了使用Python的unittest框架来加载测试用例的四种方法,包括通过测试用例类、模块、路径和逐条加载测试用例。
95 0
自动化测试项目学习笔记(三):Unittest加载测试用例的四种方法
|
2月前
|
测试技术 Python
自动化测试项目学习笔记(二):学习各种setup、tearDown、断言方法
本文主要介绍了自动化测试中setup、teardown、断言方法的使用,以及unittest框架中setUp、tearDown、setUpClass和tearDownClass的区别和应用。
79 0
自动化测试项目学习笔记(二):学习各种setup、tearDown、断言方法
|
6月前
|
机器学习/深度学习 并行计算 算法
深度学习中的自动化超参数优化方法探究
传统的深度学习模型优化通常依赖于人工调整超参数,这一过程繁琐且耗时。本文探讨了当前流行的自动化超参数优化方法,包括贝叶斯优化、遗传算法和进化策略等,分析它们在提高模型效率和性能方面的应用与挑战。
|
2月前
|
XML 前端开发 数据格式
Ruby脚本:自动化网页图像下载的实践案例
Ruby脚本:自动化网页图像下载的实践案例
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
探索软件测试的未来:AI 驱动的自动化测试方法
【5月更文挑战第29天】随着人工智能(AI)技术的不断发展和成熟,其在软件测试领域的应用也日益广泛。本文旨在探讨 AI 如何改变软件测试的面貌,特别是自动化测试方法。我们将分析当前自动化测试的挑战,并介绍 AI 如何提供解决方案,包括智能化测试用例生成、测试执行优化、以及结果分析等。通过实际案例研究,我们还将讨论 AI 在提高测试效率、减少错误和提升软件质量保障中的作用。最后,文章将预测 AI 在自动化测试领域的未来趋势,并提出对测试工程师的建议。
|
3月前
|
机器学习/深度学习 物联网 大数据
软件测试的演变与未来:从传统方法到自动化革命
在数字化时代的浪潮下,软件测试作为保障软件质量的重要环节,其方法和工具经历了翻天覆地的变化。本文将带领读者穿梭时光隧道,探索软件测试的发展历程,从手工测试的繁琐与局限性,到自动化测试的高效与精准,再到未来可能迎来的智能化与集成化趋势。通过深入浅出的分析,我们将揭示如何通过不断进化的软件测试技术,提升软件开发的效率和质量,确保在这个快速变化的时代中,软件产品能够稳健前行。
|
3月前
|
机器学习/深度学习 敏捷开发 大数据
软件测试的演变之旅:从传统方法到自动化革命
在数字时代的浪潮下,软件测试作为保障产品质量的关键一环,经历了从手工测试到自动化测试的重大转变。本文将探讨这一演变背后的驱动力、所面临的挑战以及未来的发展趋势,为读者揭示软件测试领域的深层次变革。
|
4月前
|
人工智能 自然语言处理 搜索推荐
彻底摒弃人工标注,AutoAlign方法基于大模型让知识图谱对齐全自动化
【8月更文挑战第18天】知识图谱作为结构化语义库,在AI领域应用广泛,但构建中实体对齐难题一直存在。近期,AutoAlign提供了一种全自动对齐方案,由张锐等人研发并发布于arXiv。此方法摒弃传统的人工标注依赖,利用大型语言模型实现全自动化对齐。AutoAlign包括谓词与实体对齐两部分,通过构建谓词邻近图及计算实体嵌入,有效提升对齐性能。实验显示其性能超越现有方法,尤其适用于大规模数据集。尽管如此,AutoAlign仍面临计算资源消耗及不同领域适应性等挑战,未来需进一步优化以增强鲁棒性和泛化能力。
95 7
|
3月前
|
存储 数据挖掘 测试技术
Python接口自动化中操作Excel文件的技术方法
通过上述方法和库,Python接口自动化中的Excel操作变得既简单又高效,有助于提升自动化测试的整体质量和效率。
39 0
下一篇
DataWorks