ECAI 2016论文精选 | 自适应学习网络化多代理系统中的社会规范高效出现——人工智能居然也会互相学习 | AI科技评论

简介:

应用场景导读:多代理系统是一个崭新的研究领域。它在短时间内显示出的理论和实际应用价值引起多方面的高度重视。其理论价值包括重新认识智能等基本问题,其实际应用价值包括开创基于代理的系统、人的助手、使用国际互联网获取和推销信息等。其广泛的应用领域包括太空服务、区域监测、机器人合作、工业控制、商业和经济等。

ECAI 2016论文精选 | 自适应学习网络化多代理系统中的社会规范高效出现——人工智能居然也会互相学习 | AI科技评论

标题:自适应学习网络化多代理系统中的社会规范高效出现

摘要:本文探讨了如何利用网络化多代理系统代理的自适应学习行为来加强规范。一般学习框架,其中代理可以通过他们各自学习经验进行社会学习,动态地调整自己的学习行为。本文提出的框架在各种不同情况下进行了广泛验证,利用了广泛的评价标准综合评估了效率、效果和效力。实验结果表明,自适应学习框架能可靠且高效地在众多代理中产生稳定规范。

关键词:规范;学习;多代理系统


第一作者简介:

Chao Yu

大连理工大学计算机科学与技术学院


via PRICAI 2016

论文原文件下载

雷锋网(公众号:雷锋网)按: 本文由雷锋网独家编译,未经许可禁止转载!

ECAI 2016论文精选 | 自适应学习网络化多代理系统中的社会规范高效出现——人工智能居然也会互相学习 | AI科技评论


本文作者:陈杨英杰


本文转自雷锋网禁止二次转载,原文链接

相关文章
生成式AI时代,网络安全公司F5如何重构企业防护体系?
生成式AI时代,网络安全公司F5如何重构企业防护体系?
42 9
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
292 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
探讨 AI 驱动自适应数据采集技术
在当今互联网环境下,网页结构动态变化日益复杂,传统数据采集技术面临巨大挑战。本文探讨了基于AI算法的自适应数据采集方法,结合爬虫代理、Cookie与User-Agent设置等关键技术,应对动态页面变更。通过Python示例代码,展示如何稳定抓取目标网站数据,并分析该技术的优势、挑战及实际应用注意事项,为未来数据采集提供了新思路。
115 44
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
OpenAI最新开源的BrowseComp基准包含1266个高难度网络检索问题,覆盖影视、科技、艺术等九大领域,其最新Deep Research模型以51.5%准确率展现复杂信息整合能力,为AI代理的浏览能力评估建立新标准。
72 4
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
143 4
从攻防演练到AI防护:网络安全服务厂商F5的全方位安全策略
从攻防演练到AI防护:网络安全服务厂商F5的全方位安全策略
43 8
让AI“接管”网络运维,效率提升不只是传说
让AI“接管”网络运维,效率提升不只是传说
178 16
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
130 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
161 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。

雷锋网

+ 订阅

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等