心脏病预测案例_test_2455

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: test<br />数据源:<br />数据大小:7.49 KB<br />字段数量:15<br />使用组件:归一化,拆分,过滤式特征选择,SQL脚本,读数据表,类型转换<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
6月前
以波士顿房价预测为例,演示过拟合问题和解决办法
以波士顿房价预测为例,演示过拟合问题和解决办法
108 0
|
6月前
|
资源调度 前端开发 数据可视化
R语言GARCH模型对股市sp500收益率bootstrap、滚动估计预测VaR、拟合诊断和蒙特卡罗模拟可视化
R语言GARCH模型对股市sp500收益率bootstrap、滚动估计预测VaR、拟合诊断和蒙特卡罗模拟可视化
|
6月前
|
数据可视化
R语言检验独立性:卡方检验(Chi-square test)和费舍尔Fisher精确检验分析案例报告
R语言检验独立性:卡方检验(Chi-square test)和费舍尔Fisher精确检验分析案例报告
|
6月前
|
机器学习/深度学习
以波士顿房价预测为例,演示欠拟合问题和解决办法
以波士顿房价预测为例,演示欠拟合问题和解决办法
53 0
|
数据可视化
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
|
机器学习/深度学习 算法 Python
实战案例|肿瘤预测模型~
大家好,我是志斌~ 今天来跟大家分享一下朴素贝叶斯模型的原理以及通过肿瘤预测模型来看如何用Python实现它。
1124 0
实战案例|肿瘤预测模型~
|
机器学习/深度学习 算法 自动驾驶
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值(一)
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值(一)
|
机器学习/深度学习 算法 自动驾驶
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值(二)
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测值VS真实值(二)
|
机器学习/深度学习 算法 自动驾驶
ML之回归预测:利用十(xgboost,10-1)种机器学习算法对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值——bug调试记录
ML之回归预测:利用十(xgboost,10-1)种机器学习算法对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值——bug调试记录
ML之回归预测:利用十(xgboost,10-1)种机器学习算法对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值——bug调试记录
|
机器学习/深度学习 算法 自动驾驶
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能
ML之回归预测:利用八(9-1)种机器学习算法对无人驾驶汽车参数(2017年的data,18+2)进行回归预测+评估八种模型性能