CTR中的GBDT+LR 融合方案_副本

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: GBDT+LR 融合方案<br />数据源:<br />数据大小:1.54 MB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
4月前
|
计算机视觉 网络架构
【YOLOv10改进-特征融合】YOLO-MS MSBlock : 分层特征融合策略
YOLOv10专栏介绍了YOLO-MS,一个优化多尺度目标检测的高效框架。YOLO-MS通过MS-Block和异构Kernel选择提升性能,平衡了计算复杂度与准确性。它在不依赖预训练的情况下,在COCO上超越同类模型,如YOLO-v7和RTMDet。MS-Block包含不同大小卷积的分支,用于增强特征表示。代码示例展示了MSBlock类的定义,用于处理不同尺度特征。该模块可应用于其他YOLO模型以提升性能。更多详情和配置参见相关链接。
|
4月前
|
Python
Fama-French模型,特别是三因子模型(Fama-French Three-Factor Model)
Fama-French模型,特别是三因子模型(Fama-French Three-Factor Model)
|
4月前
|
机器学习/深度学习 索引 Python
。这不仅可以减少过拟合的风险,还可以提高模型的准确性、降低计算成本,并帮助理解数据背后的真正含义。`sklearn.feature_selection`模块提供了多种特征选择方法,其中`SelectKBest`是一个元变换器,可以与任何评分函数一起使用来选择数据集中K个最好的特征。
。这不仅可以减少过拟合的风险,还可以提高模型的准确性、降低计算成本,并帮助理解数据背后的真正含义。`sklearn.feature_selection`模块提供了多种特征选择方法,其中`SelectKBest`是一个元变换器,可以与任何评分函数一起使用来选择数据集中K个最好的特征。
|
6月前
|
数据可视化
使用非凸惩罚函数回归(SCAD、MCP)分析前列腺数据
使用非凸惩罚函数回归(SCAD、MCP)分析前列腺数据
|
6月前
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
358 2
|
机器学习/深度学习 存储 边缘计算
部署技巧之PAGCP剪枝 | Yolov5/ResNet参数降低50%速度翻倍精度不减(一)
部署技巧之PAGCP剪枝 | Yolov5/ResNet参数降低50%速度翻倍精度不减(一)
1156 0
|
机器学习/深度学习
部署技巧之PAGCP剪枝 | Yolov5/ResNet参数降低50%速度翻倍精度不减(二)
部署技巧之PAGCP剪枝 | Yolov5/ResNet参数降低50%速度翻倍精度不减(二)
325 0
|
机器学习/深度学习 计算机视觉
EQ-Loss V2 | 利用梯度平均进一步缓解目标检测长尾数据分布问题(附论文下载)
EQ-Loss V2 | 利用梯度平均进一步缓解目标检测长尾数据分布问题(附论文下载)
280 0
|
机器学习/深度学习 Serverless PyTorch
torch 神经网络,每次迭代时如何计算mse损失?
在 PyTorch 中,可以使用 torch.nn.MSELoss() 函数计算均方误差 (Mean Squared Error, MSE) 损失。在每次迭代中,首先将模型的输出和目标值传递给该函数,它将返回一个张量表示损失值。然后,在优化器的帮助下,根据损失值更新神经网络参数以使其更好地拟合数据。具体代码示例如下:
665 0
|
机器学习/深度学习 人工智能 计算机视觉
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现
431 0
Focal Loss详解以及为什么能够提高处理不平衡数据分类的表现