大模型能力的不断提升,使得可与完整计算环境交互的通用智能体构建成为可能,实现在多个领域中完成复杂的任务。然而,随着这些智能体日益强大,我们也亟需更可组合、可扩展且可移植的方式来赋予它们特定领域的专业知识。
Anthropic 近期发布的“Agent Skills(智能体技能)”技术协议,通过一套结构化的指令、脚本与资源文件夹,使得智能体可动态发现并加载这些内容,从而在特定任务上表现更优。通过Skills ,专业技能得以被封装为模块化、可组合的能力和资源模块。这使得LLM的能力能被系统化的扩展,兼顾通用性与专用性。
ModelScope 社区在其开源的agent项目MS-Agent (https://github.com/modelscope/ms-agent)中,推出了对Agent Skills协议的开源实现,本文将详细介绍其概念、协议和代码实现。
1. 背景
随着模型能力提升,智能体已能与完整计算环境(如代码执行、文件系统)交互,执行跨领域复杂任务,更强大的智能体需要模块化、可扩展、可移植的方式注入领域专业知识,一个常规的做法是使用"Tool Calling"的方式,目前MCP(Model Context Protocol)协议已成为业界普遍采用的工具调用标准接口协议;然而,复杂的功能需求客观上对工具的承载能力带来了挑战,为了应对这一问题,Skills应运而生,其采用更加复杂的上下文表征,附带资源文件和可执行脚本,通过启发式上下文加载的方式来压缩上下文,使得智能体可以完成更加复杂的任务。
从可复用的视角看,Skills理念为“技能即知识”,将人类的流程性知识打包为可复用、可组合的“技能”,无需为每个场景重建定制智能体,以结构化文件夹形式(含指令、脚本、资源)动态加载,使智能体在特定任务上表现更优。构建技能如同编写入职指南,降低专业化门槛,任何人都能通过提炼并共享自身的流程性知识,以模块化方式为智能体赋予特定能力。
2. Agent Skills是什么?
2.1 架构
- 智能体技能架构
- 文件夹结构
skill-name/ ├── SKILL.md # Main skill definition (Required) ├── reference.md # Detailed reference material (Optional) ├── LICENSE.txt # License information (Optional) ├── resources/ # Additional resources (Optional) │ ├── template.xlsx # Example files │ └── data.json # Data files └── scripts/ # Executable scripts (Optional) ├── main.py # Main implementation └── helper.py # Helper functions
2.2 SKILL.md 文件格式
SKILL.md 文件使用YAML前置内容定义元数据,后续为详细说明的Markdown内容。
💡 说明:
name和description字段为必填项。SKILL.md文件的正文部分应提供关于技能的全面描述,包括功能、使用说明、参考资料、资源和示例。SKILL.md示例:https://github.com/anthropics/skills/blob/main/document-skills/pdf/SKILL.md
2.3 绑定附加内容
附加的文件可以包含在SKILL.md中以扩展技能功能,例如:
- References (例如
reference.md和forms.md)
- Scripts
- Scrips目前支持的类型包括python、shell、js等
2.4 技能和上下文
- 推荐设置技能文件的token限制,以确保在上下文窗口限制内高效加载
3. 技能的实现
3.1 概览
MS-Agent框架的AgentSkills模块是对Anthropic-Agent-Skills协议的实现(Beta版本)。
Agent Skills实现了多层次渐进式上下文加载机制,有效管理技能的发现与执行:
- Level 1 (Metadata): 仅加载技能元数据(名称、描述)以进行语义搜索
- Level 2 (Retrieval): 检索相关技能并加载SKILL.md全文
- Level 3 (Resources): 进一步加载技能所需的参考资料和资源文件
- Level 4 (Analysis|Planning|Execution): 分析技能上下文,自主制定计划和任务列表,并加载所需资源和运行相关脚本
这种方法在提供全面技能能力的同时,最大限度地减少资源消耗。
- 核心组件
| 组件 | 描述 |
| AgentSkill | 主流程 |
| SkillLoader | 加载和管理技能 |
| Retriever | 使用语义搜索查找相关技能 |
| SkillContext | 技能上下文管理 |
| ScriptExecutor | 技能执行模块 |
| SkillSchema | 技能Schema定义 |
3.2 主要特性
- 📜 标准技能协议:完全兼容 Anthropic Skills 协议
- 🧠 启发式上下文加载:仅按需加载必要上下文(如
References、Resources和Scripts) - 🤖 自主执行能力:智能体可根据技能定义,自主分析、规划并决策需调用的脚本与资源
- 🔍 技能管理支持:支持批量加载技能,并能根据用户输入自动检索与发现相关技能
- 🛡️ 代码执行环境:可选本地直接执行代码,或通过 ms-enclave (https://github.com/modelscope/ms-enclave) 提供的安全沙箱执行(自动安装依赖、实现环境隔离)
- 📁 多文件类型支持:支持文档、脚本与资源文件等多种类型
- 🧩 可扩展设计:技能数据结构模块化,提供如
SkillSchema和SkillContext等实现,便于扩展与定制
3.3 安装
- Install from PyPI
pip install 'ms-agent>=1.4.0'
- Install from Source
git clone git@github.com:modelscope/ms-agent.git cd ms-agent pip install -e .Configuration export OPENAI_API_KEY="your-api-key"
- Configuration
export OPENAI_API_KEY="your-api-key" export OPENAI_BASE_URL="your-base-url"
3.4 使用方法
下面是一个实现流场粒子艺术生成的示例
import os from ms_agent.agent import create_agent_skill def main(): """ Main function to create and run an agent with skills. """ work_dir: str = './temp_workspace' # Refer to `https://github.com/modelscope/ms-agent/tree/main/projects/agent\_skills/skills\` skills_dir: str = './skills' use_sandbox: bool = True ## Configuration for ModelScope API-Inference, or set your own model with OpenAI API compatible format ## Free LLM API inference calls for ModelScope users, refer to [ModelScope API-Inference](https://modelscope.cn/docs/model-service/API-Inference/intro) model: str = 'Qwen/Qwen3-235B-A22B-Instruct-2507' api_key: str = 'xx-xx' # For ModelScope users, refer to `https://modelscope.cn/my/myaccesstoken\` to get your access token base_url: str = 'https://api-inference.modelscope.cn/v1/' agent = create_agent_skill( skills=skills_dir, model=model, api_key=os.getenv('OPENAI_API_KEY', api_key), base_url=os.getenv('OPENAI_BASE_URL', base_url), stream=True, # Note: Make sure the `Docker Daemon` is running if use_sandbox=True use_sandbox=use_sandbox, work_dir=work_dir, ) user_query: str = ('Create generative art using p5.js with seeded randomness, flow fields, and particle systems, ' 'please fill in the details and provide the complete code based on the templates.') response = agent.run(query=user_query) print(f'\n\n** Agent skill results: {response}\n') if __name__ == '__main__': main()
本地执行
- 若
use_sandbox=False,技能脚本将在本地环境中直接执行 - 请确保您信任该技能脚本,以避免潜在的安全风险
- 请确保本地 Python 环境中已安装脚本所需的全部依赖项
沙箱执行
- 若
use_sandbox=True,技能脚本将通过 ms-enclave (https://github.com/modelscope/ms-enclave) 在隔离的 Docker 容器中执行 - 该方式提供安全的执行环境,可有效防止对宿主系统造成潜在危害
- 请确保您的机器上已安装 Docker,并且 Docker 服务(Docker Daemon)正在运行
- 沙箱环境将根据技能声明的依赖项自动安装所需依赖,无需手动配置
运行结果