基于YOLOv8的学生课堂行为识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

简介: 本项目基于YOLOv8与PyQt5开发,可实时识别学生课堂行为(如举手、看书、写作业等),支持图片、视频、摄像头输入。含完整源码、数据集、预训练模型及部署教程,适用于智慧教室场景,助力教学分析智能化转型。

基于YOLOv8的学生课堂行为识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程

可实现实时监测学生的举手、看书、写作业等行为,助力智慧教室场景落地。

基本功能演示

哔哩哔哩:https://www.bilibili.com/video/BV1m7KJzNEQ2

视频下方简介处贴有项目源码。

项目摘要

本项目集成了 YOLOv8 行为检测模型PyQt5 图形界面工具,实现了包括图片、文件夹、视频与摄像头等多种输入方式的学生行为识别系统。支持识别如:举手、看书、写作业、趴桌、玩手机等行为,广泛适用于智能教室、在线课堂监管、教学分析等场景,源码打包在文末。

  • 教育场景中学生行为分析的需求
  • 常见行为分类(如举手、打瞌睡、听讲、看书、玩手机等)
  • AI赋能智慧校园的趋势
  • 传统方法 VS 深度学习检测的对比优势

@[toc]

前言

资源项 说明
✅ 完整源码 YOLOv8 + PyQt5 项目结构清晰
✅ 数据集 多类别行为数据,YOLO格式
✅ 预训练权重 已完成训练,直接推理
✅ 训练脚本 从数据标注到模型导出全流程
✅ PyQt5 GUI 图形界面支持摄像头/视频检测
✅ 部署教程 配置环境即可运行

一、软件核心功能介绍及效果演示

在教育领域,课堂行为分析对学生学习状态的理解与干预至关重要。传统人工监管费时费力,而基于深度学习的目标检测方法,特别是YOLOv8,已经在多个实时场景中展现了卓越性能。本项目旨在提供一个简单、可扩展的学生行为检测系统,帮助教育工作者高效掌握学生课堂动态。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20250625145820900


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20250625145845771


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20250625145938482


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20250625145959438


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250625150012209

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义)

在这里插入图片描述

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250625150050445

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

result_0002019

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码下载

💾 Gitee项目地址:https://gitee.com/goodnsxxc/yolo-main

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本文详细介绍了基于YOLOv8模型的学生课堂行为识别系统的设计与实现,涵盖了完整的数据集构建、模型训练流程、PyQt5图形界面开发及多场景检测演示。通过深度学习技术,项目能够实现对学生举手、看书、写作业等多种行为的实时准确识别,极大地提升了课堂管理的智能化水平。

该系统不仅具备较高的检测精度和实时性,还支持多种输入形式(图片、视频、摄像头),并配备友好的图形界面,方便非专业用户快速部署和使用。配套的源码和训练教程让开发者可以轻松复现和二次开发,满足不同教学场景的定制需求。

未来,项目可结合人体姿态估计、多摄像头联动及行为统计分析等技术,进一步提升系统的智能化和实用性,为智慧校园建设贡献更强大的技术支撑。

相关文章
|
4月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8模型与PyQt5界面,实现共享单车/自行车乱停放的智能检测。支持图片、视频、文件夹及摄像头输入,提供实时检测与结果保存功能。配套完整源码、训练数据集与权重文件,开箱即用,适合城市管理、交通执法等场景。项目包含详细训练教程与部署指南,助力AI学习者快速上手,推动智慧城市应用开发。
基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
机器学习/深度学习 编解码 API
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
|
4月前
|
人工智能 运维 安全
基于合合信息开源智能终端工具—Chaterm的实战指南【当运维遇上AI,一场效率革命正在发生】
在云计算和多平台运维日益复杂的今天,传统命令行工具正面临前所未有的挑战。工程师不仅要记忆成百上千条操作命令,还需在不同平台之间切换终端、脚本、权限和语法,操作效率与安全性常常难以兼顾。尤其在多云环境、远程办公、跨部门协作频繁的背景下,这些“低效、碎片化、易出错”的传统运维方式,已经严重阻碍了 IT 团队的创新能力和响应速度。 而就在这时,一款由合合信息推出的新型智能终端工具——Chaterm,正在悄然颠覆这一现状。它不仅是一款跨平台终端工具,更是业内率先引入 AI Agent 能力 的“会思考”的云资源管理助手。
|
4月前
|
机器学习/深度学习 监控 自动驾驶
基于YOLOv8的交通标识及设施识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5,打造交通标识及设施智能识别系统。支持图像、视频、摄像头输入,可检测人行横道、限速标志、停车标志和交通信号灯。提供完整源码、数据集、权重文件与训练教程,开箱即用,适合多场景应用。系统具备高精度、实时性强、部署便捷等优势,助力智能交通与自动驾驶发展。
基于YOLOv8的交通标识及设施识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
4月前
|
机器学习/深度学习 安全 数据挖掘
基于YOLOv8的疲劳状态识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
这是一套基于YOLOv8的疲劳状态识别项目,包含完整源码、数据集、PyQt5界面及训练流程。系统可实时检测打哈欠、闭眼等疲劳行为,支持图片、视频、文件夹和摄像头多种输入方式,并自动保存检测结果。项目开箱即用,配有详细教程,适合快速部署。模型高效精准,界面友好易用,为疲劳驾驶预警提供技术保障。
229 114
基于YOLOv8的疲劳状态识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
2月前
|
算法 Go 计算机视觉
YOLOv8结构解读
YOLOv8是Ultralytics团队开发的最新目标检测模型,基于YOLO系列的高效单阶段架构,进一步优化了精度与速度。相比YOLOv5,YOLOv8在Backbone中移除了Focus模块,优化了CSP结构;在Neck部分增强了特征融合能力;Head部分采用Anchor-Free与解耦头设计,提升检测精度。此外,YOLOv8引入了更先进的损失函数、自对抗训练和动态标签分配等策略,显著提高了模型性能与鲁棒性。
452 0
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于YOLOv8的无人机航拍树木目标检测系统|精准识别【含完整训练源码+部署教程】
本项目基于YOLOv8构建了一个支持无人机航拍图像的棕榈树目标检测系统,兼具高精度识别能力与友好的图形化交互界面。通过结合PyQt5,实现了图片、视频、摄像头等多种输入方式的检测体验,极大提升了项目的实用性与可扩展性。
基于YOLOv8的无人机航拍树木目标检测系统|精准识别【含完整训练源码+部署教程】
|
3月前
|
机器学习/深度学习 监控 安全
基于YOLOv8的有无戴安全帽检测识别项目
本项目通过集成 YOLOv8 强大的目标检测能力与 PyQt5 的可视化界面,构建了一个 实用性强、易于部署、安全帽自动识别系统。无论是单张图片、视频监控,还是实时摄像头输入,该系统均可稳定工作,准确判断佩戴与未佩戴状态,极大减轻了传统人工巡查压力。
基于YOLOv8的有无戴安全帽检测识别项目
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于YOLOv8的PCB缺陷检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8实现PCB缺陷检测,提供一站式解决方案。包含完整训练代码、标注数据集、预训练权重及PyQt5图形界面,支持图片、文件夹、视频和摄像头四种检测模式。项目开箱即用,适合科研、工业与毕业设计。核心功能涵盖模型训练、推理部署、结果保存等,检测类型包括缺孔、鼠咬缺口、开路、短路、飞线和杂铜。项目具备高性能检测、友好界面、灵活扩展及多输入源支持等优势,未来可优化模型轻量化、多尺度检测及报告生成等功能。
基于YOLOv8的PCB缺陷检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
3月前
|
机器学习/深度学习 人工智能 边缘计算
基于YOLOv8的包装箱纸板破损缺陷识别项目
本项目集成了 YOLOv8纸板破损缺陷检测模型 与 PyQt5图形界面工具,支持对工厂包装纸箱表面出现的多种破损瑕疵(如撕裂、压痕、孔洞等)进行快速准确识别。检测逻辑精准,界面操作便捷,适用于工厂自动质检、流水线布控系统等实际场景。提供完整训练流程与数据,开箱即用、部署无门槛,适合AI新手和工业视觉开发者学习与二次开发。
基于YOLOv8的包装箱纸板破损缺陷识别项目