基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)

简介: 本系统结合 YOLOv8检测模型 与 PyQt5界面工具,不仅提供完整训练流程,还支持自定义数据集训练,帮助用户快速搭建 开箱即用的打架斗殴行为识别系统。

基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)

本项目是一款基于 YOLOv8 的智能视频分析系统,专注于 打架、斗殴及暴力行为的自动识别,集成了易用的 PyQt5 图形界面工具,适用于图片、视频、文件夹批量处理以及实时摄像头监控。

项目亮点

🔹 完整源码:YOLOv8 模型训练代码、权重文件、数据集(带标注)

🔹 开箱即用:无需额外配置,即可运行检测程序

🔹 多输入方式支持:单张图片、批量图片、视频文件、实时摄像头

🔹 可扩展性强:适合科研、安防、校园或企业监控场景

源码获取:文末哔哩哔哩视频简介处下载

项目摘要

本系统结合 YOLOv8检测模型PyQt5界面工具,不仅提供完整训练流程,还支持自定义数据集训练,帮助用户快速搭建 开箱即用的打架斗殴行为识别系统

核心优势:

  1. 快速部署:即下载源码即可使用
  2. 高精度识别:基于YOLOv8的检测模型实现准确的行为识别
  3. 可视化操作:PyQt5图形界面,操作简便直观
  4. 数据可扩展:可在原有数据集基础上继续标注训练,提高模型适用性

前言

随着公共安全需求不断增加,智能视频分析系统成为安防、校园、社区监控等场景的重要工具。本项目旨在提供一套 轻量、易用、高精度 的解决方案,让研究者和开发者能够快速体验并部署打架斗殴暴力行为识别模型,同时可用于教学、科研或实际安防项目。

一、软件核心功能介绍及效果演示

本系统集成了 YOLOv8 高精度检测模型PyQt5 图形界面,实现了对打架、斗殴及暴力行为的智能识别。软件支持 单张图片、批量图片、视频文件以及实时摄像头输入,用户可通过简单的界面操作完成文件加载、检测启动及结果展示。

在检测过程中,系统会自动对画面中的暴力行为进行 实时标注,包括行为框、类别标签及置信度评分,便于用户直观判断事件发生情况。同时,软件提供 检测结果保存功能,可以将处理后的图片或视频导出,用于后续分析或证据留存。

整体效果演示中,无论是视频中的多人打斗场景,还是静态图片中的肢体冲突,系统均能准确定位并标注,提高监控和安全管理的效率与准确性。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20250907211342233


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20250907211402457


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20250907212023443


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250907211432344

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

image-20250907211514371

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

在这里插入图片描述

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

image-20250907211601429

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码

至项目实录视频下方获取:https://www.bilibili.com/video/BV18UYEzMEPX/

image-20250801135823301

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目基于 YOLOv8 构建了一套完整的 打架斗殴暴力行为智能识别系统,并配套了 PyQt5 图形界面,实现了图片、视频、批量文件以及实时摄像头的多场景输入。系统特点包括:

  1. 高精度识别:利用YOLOv8模型,对打架及暴力行为进行实时检测和标注。
  2. 开箱即用:提供完整源码、训练流程、权重文件和数据集,即下载即可部署。
  3. 多场景适配:支持单张图片、批量图片、视频文件及摄像头实时监控。
  4. 可视化操作:简洁直观的PyQt5界面,操作简单,检测结果实时展示并可保存。
  5. 可扩展性强:可基于自定义数据集继续训练,提高模型识别能力和适用场景。

该系统不仅适用于科研与教学,还可广泛应用于 公共安全、校园管理、企业监控等场景,为暴力行为预警和安全管理提供智能化技术支持。

相关文章
|
4月前
|
人工智能 监控 安全
人体姿态[站着、摔倒、坐、深蹲、跑]检测数据集(6000张图片已划分、已标注)| AI训练适用于目标检测
本数据集包含6000张已标注人体姿态图片,覆盖站着、摔倒、坐、深蹲、跑五类动作,按5:1划分训练集与验证集,标注格式兼容YOLO等主流框架,适用于跌倒检测、健身分析、安防监控等AI目标检测任务,开箱即用,助力模型快速训练与部署。
|
3月前
|
机器学习/深度学习 人工智能 监控
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
本数据集包含10,000张标注图片,专注翻墙、攀爬等违规行为检测,适用于YOLOv8模型训练。涵盖工地、校园等多种场景,支持智能安防、视频分析等应用,助力构建高效安全监控系统。
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
|
JavaScript
Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)
近日,Bert-vits2-v2.2如约更新,该新版本v2.2主要把Emotion 模型换用CLAP多模态模型,推理支持输入text prompt提示词和audio prompt提示语音来进行引导风格化合成,让推理音色更具情感特色,并且推出了新的预处理webuI,操作上更加亲民和接地气。
Bert-vits2-v2.2新版本本地训练推理整合包(原神八重神子英文模型miko)
|
4月前
|
存储 编解码 并行计算
《3D山地场景渲染进阶:GPU驱动架构下细节与性能平衡的6大技术实践》
本文围绕3D开放世界山地场景渲染,分享GPU驱动架构下平衡地形细节与性能的实践经验。针对传统CPU驱动架构的负载失衡问题,重构Tile-Sector-Patch三级数据结构,将地形计算迁移至GPU,降低CPU耗时;通过自适应压缩与裂缝修复优化四叉树,减少显存占用;设计融合距离与地形复杂度的LOD模型,兼顾细节与效率;借ID Map与三平面渲染优化材质混合,降低带宽消耗;采用Chunk位图与视差贴图实现轻量化动态地形交互;最后通过统一LOD阈值与设备定制参数,实现多系统协同适配。
606 8
|
4月前
|
人工智能 监控 算法
人群计数、行人检测数据集(9000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含9000张已标注、已划分的行人图像,适用于人群计数与目标检测任务。支持YOLO等主流框架,涵盖街道、商场等多种场景,标注精准,结构清晰,助力AI开发者快速训练高精度模型,应用于智慧安防、人流统计等场景。
人群计数、行人检测数据集(9000张图片已划分、已标注) | AI训练适用于目标检测任务
|
3月前
|
机器学习/深度学习 人工智能 监控
番茄叶片病害检测数据集(千张图片已划分)| AI训练适用于目标检测任务
在农业领域,植物病害检测是确保作物健康和提高农业生产效率的关键任务之一。随着计算机视觉技术的快速发展,基于深度学习的目标检测方法成为了病害识别的主流手段。为此,专门针对番茄叶片病害检测任务,我们推出了一个经过精心设计的番茄叶片病害检测数据集。该数据集包含了10,853张带标签的图像,覆盖了10种常见的番茄叶片病害类型,支持YOLO等先进的目标检测模型训练,旨在帮助研究人员和开发者提高农作物病害自动化检测的能力。
568 40
番茄叶片病害检测数据集(千张图片已划分)| AI训练适用于目标检测任务
|
4月前
|
人工智能 监控 算法
睡岗检测/睡觉检测数据集(2000张图片已划分、已标注)轻松上手目标检测训练
本数据集包含2000张已标注睡岗行为图片,涵盖多种真实场景,适用于YOLO等目标检测模型训练。专为安防、工业值守、交通监控等智能识别场景设计,助力快速构建睡岗检测系统,推动AI在安全领域的落地应用。
789 12
睡岗检测/睡觉检测数据集(2000张图片已划分、已标注)轻松上手目标检测训练
|
5月前
|
机器学习/深度学习 监控 安全
基于YOLOv8的跨越围栏/翻墙行为识别项目|开箱即用全流程源码
本项目基于YOLOv8目标检测模型和PyQt5图形界面工具,成功实现了翻越攀爬围栏和翻墙行为的智能检测系统。通过集成YOLOv8的高效目标检测能力和PyQt5的易用界面,本系统能够准确识别不同场景中的翻越行为,并提供多种输入方式(图片、视频、文件夹、摄像头)进行实时检测,满足多种应用需求。
|
4月前
|
人工智能 监控 并行计算
厨房食品卫生与安全检测14类数据集(18万张图片,已划分、已标注)——AI智能检测的行业实践基石
本数据集包含18万张标注图像,覆盖蟑螂、老鼠、口罩佩戴等14类厨房安全目标,专为YOLO等目标检测模型设计,助力AI实现厨房卫生智能监控,推动食品安全数字化升级。
厨房食品卫生与安全检测14类数据集(18万张图片,已划分、已标注)——AI智能检测的行业实践基石
|
4月前
|
机器学习/深度学习 人工智能 编解码
7种常见鸟类分类图像数据集(8000张图片已划分)|AI训练适用于目标检测任务
本数据集包含8000张7类常见鸟类图像,涵盖麻雀、鸽子、乌鸦等,已划分训练与验证集,适用于AI目标检测与分类任务,支持YOLO、ResNet等模型,助力生态监测与科研教学。
7种常见鸟类分类图像数据集(8000张图片已划分)|AI训练适用于目标检测任务