基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

简介: 本项目基于YOLOv8模型与PyQt5界面,实现共享单车/自行车乱停放的智能检测。支持图片、视频、文件夹及摄像头输入,提供实时检测与结果保存功能。配套完整源码、训练数据集与权重文件,开箱即用,适合城市管理、交通执法等场景。项目包含详细训练教程与部署指南,助力AI学习者快速上手,推动智慧城市应用开发。

基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程

基本功能演示

哔哩哔哩:https://www.bilibili.com/video/BV1HxKbzSEco

项目摘要

本项目集成了 YOLOv8 目标检测模型PyQt5 图形界面工具,实现了包括图片、文件夹、视频与摄像头等多种输入方式的共享单车/自行车乱停放检测功能。配套完整源码与训练流程说明,让你开箱即用、快速部署自己的乱停车辆识别系统,源码打包在文末。

@[toc]

前言

近年来,随着共享单车在城市中迅速普及,随意停放问题日益严重,影响了市容市貌与交通秩序。传统的人工巡查方式效率低、成本高,急需借助人工智能实现智能化治理。

本项目通过部署 YOLOv8目标检测模型,结合自行采集与标注的数据,完成了对共享单车/自行车乱停放行为的精准识别。借助 PyQt5 可视化界面,用户无需了解复杂代码,即可完成检测、导出与模型测试。

一、软件核心功能介绍及效果演示

✅ 支持摄像头/视频/图片/文件夹多种输入源

✅ 支持实时检测与结果展示

✅ 提供PyQt5图形界面,一键点击即检测

✅ YOLOv8自训练模型,准确识别共享单车/自行车随意停放行为

✅ 检测结果可保存为图片/视频,支持导出

✅ 模型训练+推理全流程复现

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20250623102944917


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20250623103000222


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20250623103208725


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20250623103222469


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250623103238588

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

val_batch0_pred

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250623102610455

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

result_IMG_7563@0.5x

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码下载

计算机视觉YOLO项目源码:ComputerVisionProject

💾 Gitee项目地址:https://gitee.com/goodnsxxc/yolo-main

也可至项目实录视频下方获取:

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目围绕 YOLOv8 模型与 PyQt5 界面集成,实现了共享单车/自行车乱停放的自动检测与可视化展示,具备完整的训练流程、标注数据与部署工具链,真正做到了开箱即用、快速复现、轻松改造。通过摄像头、视频、图像等多种输入方式,项目可广泛应用于城市管理、交通执法、智慧园区等场景。欢迎大家下载源码进行二次开发或部署落地,共同推动智慧城市的建设。

🚴‍♀️ 🚴 项目不仅是一份完整的目标检测工程模板,也是一套集检测、训练、部署于一体的AI实践教学案例,适合毕业设计/科研课题/AI初学者进阶等多个方向。

相关文章
|
15天前
|
人工智能 运维 安全
基于合合信息开源智能终端工具—Chaterm的实战指南【当运维遇上AI,一场效率革命正在发生】
在云计算和多平台运维日益复杂的今天,传统命令行工具正面临前所未有的挑战。工程师不仅要记忆成百上千条操作命令,还需在不同平台之间切换终端、脚本、权限和语法,操作效率与安全性常常难以兼顾。尤其在多云环境、远程办公、跨部门协作频繁的背景下,这些“低效、碎片化、易出错”的传统运维方式,已经严重阻碍了 IT 团队的创新能力和响应速度。 而就在这时,一款由合合信息推出的新型智能终端工具——Chaterm,正在悄然颠覆这一现状。它不仅是一款跨平台终端工具,更是业内率先引入 AI Agent 能力 的“会思考”的云资源管理助手。
60 6
|
15天前
|
人工智能 并行计算 数据可视化
ms-swift 微调 internlm3-8b-instruct(论文分类任务)
本文介绍了使用InternLM系列模型进行论文分类任务的微调全过程,包括环境配置、数据准备、预训练与SFT(监督微调)、权重合并、模型评测及上传至魔搭社区等步骤。使用ms-swift框架和Lora训练方法,在具备40GB显存的A100 GPU环境下完成训练,并通过Swift工具进行效果评估。
93 5
ms-swift 微调 internlm3-8b-instruct(论文分类任务)
|
2月前
|
机器学习/深度学习 人工智能 安全
基于YOLOv8的路面缺陷(路面裂缝、井盖、坑洼路面)识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用!】
本项目基于YOLOv8与PyQt5,打造路面缺陷检测系统,支持裂缝、井盖、坑洼识别,涵盖图片、视频、摄像头等多种输入方式。提供完整训练数据、预训练模型及图形化界面,开箱即用,本地运行,方便二次开发。适用于智慧城市建设与道路安全巡检,推动AI检测技术实际应用。项目包含源码、数据集、训练代码,支持科研学习与工程实战。
200 15
基于YOLOv8的路面缺陷(路面裂缝、井盖、坑洼路面)识别项目【完整源码数据集+PyQt5界面+完整训练流程+开箱即用!】
|
8天前
|
人工智能 Kubernetes 调度
基于 AI 网关和 llmaz,提升 vLLM 推理服务可用性和部署易用性的实践
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
143 16
|
8天前
|
人工智能 IDE 定位技术
通义灵码 AI IDE 上线,第一时间测评体验
通义灵码 AI IDE 重磅上线,开启智能编程新纪元!无需插件,开箱即用,依托通义千问大模型,实现高效、智能的编程体验。支持 MCP 工具链,可快速调用多种服务(如12306余票查询、高德地图标注等),大幅提升开发效率。结合 Qwen3 强大的 Agent 能力,开发者可通过自然语言快速构建功能,如智能选票系统、地图可视化页面等。行间代码预测、AI 规则定制、记忆能力等功能,让 AI 更懂你的编码习惯。Lingma IDE 不仅是工具,更是开发者身边的智能助手,助力 AI 编程落地实践。立即下载体验,感受未来编程的魅力!
120 17
|
12天前
|
人工智能 并行计算 持续交付
如何使用龙蜥衍生版KOS,2步实现大模型训练环境部署
大幅降低了用户开发和应用大模型的技术门槛。
|
8天前
|
人工智能 运维 Kubernetes
这家公司使用 MCP,已向企业交付 1000 名数字员工
君润人力是一家科技驱动的人力资源服务公司,专注于为服务业提供一站式人力资源解决方案。通过AI与数字员工技术,公司在招聘、社保等领域实现自动化服务,提升效率并降低成本。同时,君润积极探索MCP协议和Higress网关技术,构建“数字灵工”平台,推动人服行业的智能化转型。
|
6天前
|
SQL 人工智能 数据可视化
开源AI BI可视化工具-WrenAI
Wren AI 是一款开源的 SQL AI 代理,支持数据、产品及业务团队通过聊天、直观界面和与 Excel、Google Sheets 的集成获取洞察。它结合大型语言模型(LLM)与检索增强生成(RAG)技术,助力用户高效处理复杂数据分析任务。
|
11天前
|
人工智能 弹性计算 自然语言处理
从0到1部署大模型,计算巢模型市场让小白秒变专家
阿里云计算巢模型市场依托阿里云弹性计算资源,支持私有化部署,集成通义千问、通义万象、Stable Diffusion等领先AI模型,覆盖大语言模型、文生图、多模态、文生视频等场景。模型部署在用户云账号下,30分钟极速上线,保障数据安全与权限自主控制,适用于企业级私有部署及快速原型验证场景。
|
7天前
|
存储 人工智能 JavaScript
小米AI眼镜是值不值得买,看完就知道
2025年6月26日,小米正式发布首款AI眼镜,售价1999元起。搭载高通AR1芯片与恒玄2700,配备1200万摄像头、5麦克风阵列,支持录音转写、同声传译、卡路里识别等功能。可选电致变色镜片,双指轻划0.2秒变色。4GB+32GB存储组合,续航约50分钟。外观致敬Meta RayBan,经典百搭。虽定价略高,但功能丰富,适合有智能穿戴需求的用户。