QWEN-VL Plus 使用小记

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 近期尝试使用Qwen VL Plus模型处理图像识别任务,以GIS专业背景选择了一张街景图片进行测试。体验上,API调用流畅,环境配置简单,且成本低廉,免费额度可支持约1,000张图片的处理。不过,模型在某些情况下会产生幻觉,如对仅含Google水印的街景图片错误地描述存在地名信息。此外,其文本描述风格多变,从轻松愉快到沉稳不一,有时甚至会拒绝回答。

最近在尝试使用image-text类型的LLM来判断图像。因为是GIS专业的,就随便找了一张街景。采用了Qwen VL Plus模型。

  • 首先调用很丝滑。api配置很简单,环境配置很简单。
  • 其次费用比较低。平均下来,一张图用了差不多1k token,这样的话,免费额度可以问1,000张。
  • 但是回答的幻觉还是有的。
  • 在街景图像中。只有google的水印。但是他描述了图片中有地名的存在……
  • 文本描述能力上,文风多样。一会儿轻快愉悦。一会儿沉稳。甚至拒绝回答。
目录
相关文章
|
监控 PyTorch 算法框架/工具
Qwen-VL怎么用自己的数据集微调
Qwen-VL怎么用自己的数据集微调
1694 0
|
机器学习/深度学习 人工智能 算法
通义千问Qwen-72B-Chat大模型在PAI平台的微调实践
本文将以Qwen-72B-Chat为例,介绍如何在PAI平台的快速开始PAI-QuickStart和交互式建模工具PAI-DSW中高效微调千问大模型。
|
8月前
|
机器学习/深度学习 编解码 JSON
Qwen2.5-VL!Qwen2.5-VL!!Qwen2.5-VL!!!
Qwen2.5-VL!Qwen2.5-VL!!Qwen2.5-VL!!!
|
8月前
|
JSON 文字识别 测试技术
Qwen2.5-VL Cookbook来啦!手把手教你怎么用好视觉理解模型!
今天,Qwen团队发布了一系列展示 Qwen2.5-VL 用例的Notebook,包含本地模型和 API 的使用。
2596 22
|
7月前
|
自然语言处理 测试技术 决策智能
让RAG更聪明,ViDoRAG开启视觉文档检索增强生成新范式,上阿里云百炼可直接体验
视觉丰富文档的高效检索与生成是自然语言处理领域的重大挑战。ViDoRAG(Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents)由阿里巴巴通义实验室、中国科学技术大学和上海交通大学联合提出,通过多智能体框架和动态迭代推理机制解决此问题。其核心包括多模态混合检索策略和多智能体生成流程,同时发布的ViDoSeek数据集,专为大规模文档集合设计,提供复杂推理与精准问答的评估基准。实验表明,ViDoRAG在准确率和效率上优于传统方法,未来将优化系统性能并降低计算成本。
857 63
|
10月前
|
JSON 文字识别 数据可视化
Qwen2-VL微调实战:LaTex公式OCR识别任务(完整代码)
《SwanLab机器学习实战教程》推出了一项基于Qwen2-VL大语言模型的LaTeX OCR任务,通过指令微调实现多模态LLM的应用。本教程详述了环境配置、数据集准备、模型加载、SwanLab集成及微调训练等步骤,旨在帮助开发者轻松上手视觉大模型的微调实践。
|
10月前
|
自然语言处理 NoSQL API
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 基于指令的智能工具调用决策 智能体
基于百炼平台的 `qwen-max` API,设计了一套融合检索增强、图谱增强及指令驱动的智能工具调用决策系统。该系统通过解析用户指令,智能选择调用检索、图谱推理或模型生成等工具,以提高问题回答的准确性和丰富性。系统设计包括指令解析、工具调用决策、检索增强、图谱增强等模块,旨在通过多种技术手段综合提升智能体的能力。
683 5
|
6月前
|
人工智能 前端开发 Java
AI大模型进阶系列(03) prompt 工程指南 | 实战核心技术有哪些?
本文深入讲解了AI大模型中的prompt工程。文章分析了role角色(system、user、assistant)的意义,message多轮会话记忆机制,以及prompt的核心三要素(上下文背景、输入内容、输出指示)。同时介绍了多种提示优化技术,如少样本提示、CoT链式思考、prompt chaining链式提示、思维树ToT提示等,还展示了让AI生成提示词的方法,为实际应用提供了全面指导。
|
10月前
|
机器学习/深度学习 人工智能 算法
QWEN-VL 也能打星际!!!
基于Camel agent框架和 QWEN-VL实现的星际争霸2 多模态 决策环境, 提出了基于vlm的self-attention 算法
|
10月前
|
机器学习/深度学习 人工智能 安全
通义视觉推理大模型QVQ-72B-preview重磅上线
Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。
2036 51

热门文章

最新文章