本文介绍如何通过Ollama结合Qwen2,搭建OpenAI格式的聊天API,并与外部函数结合来拓展模型的更多功能。
tools是OpenAI的Chat Completion API中的一个可选参数,可用于提供函数调用规范(function specifications)。这样做的目的是使模型能够生成符合所提供的规范的函数参数格式。同时,API 实际上不会执行任何函数调用。开发人员需要使用模型输出来执行函数调用。
Ollama支持OpenAI格式API的tool参数,在tool参数中,如果functions提供了参数,Qwen将会决定何时调用什么样的函数,不过Ollama目前还不支持强制使用特定函数的参数tool_choice。
注:本文测试用例参考OpenAI cookbook:https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
本文主要包含以下三个部分:
- 模型部署:使用Ollama和千问,通过设置template,部署支持Function call的聊天API接口。
- 生成函数参数:指定一组函数并使用 API 生成函数参数。
- 调用具有模型生成的参数的函数:通过实际执行具有模型生成的参数的函数来闭合循环。
模型部署
单模型文件下载
使用ModelScope命令行工具下载单个模型,本文使用Qwen2-7B的GGUF格式:
modelscope download --model=qwen/Qwen2-7B-Instruct-GGUF --local_dir . qwen2-7b-instruct-q5_k_m.gguf
Linux环境使用
Liunx用户可使用魔搭镜像环境安装【推荐】
modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux cd ollama-linux sudo chmod 777 ./ollama-modelscope-install.sh ./ollama-modelscope-install.sh
启动Ollama服务
ollama serve
创建ModelFile
复制模型路径,创建名为“ModelFile”的meta文件,其中设置template,使之支持function call,内容如下:
FROM /mnt/workspace/qwen2-7b-instruct-q5_k_m.gguf # set the temperature to 0.7 [higher is more creative, lower is more coherent] PARAMETER temperature 0.7 PARAMETER top_p 0.8 PARAMETER repeat_penalty 1.05 TEMPLATE """{{ if .Messages }} {{- if or .System .Tools }}<|im_start|>system {{ .System }} {{- if .Tools }} # Tools You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools>{{- range .Tools }}{{ .Function }}{{- end }}</tools> For each function call, return a JSON object with function name and arguments within <tool_call></tool_call> XML tags as follows: <tool_call> {"name": <function-name>, "arguments": <args-json-object>} </tool_call>{{- end }}<|im_end|>{{- end }} {{- range .Messages }} {{- if eq .Role "user" }} <|im_start|>{{ .Role }} {{ .Content }}<|im_end|> {{- else if eq .Role "assistant" }} <|im_start|>{{ .Role }} {{- if .Content }} {{ .Content }} {{- end }} {{- if .ToolCalls }} <tool_call> {{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}} {{ end }}</tool_call> {{- end }}<|im_end|> {{- else if eq .Role "tool" }} <|im_start|>user <tool_response> {{ .Content }} </tool_response><|im_end|> {{- end }} {{- end }} <|im_start|>assistant {{ else }}{{ if .System }}<|im_start|>system {{ .System }}<|im_end|> {{ end }}{{ if .Prompt }}<|im_start|>user {{ .Prompt }}<|im_end|> {{ end }}<|im_start|>assistant {{ end }} """
创建自定义模型
使用ollama create命令创建自定义模型
ollama create myqwen2 --file ./ModelFile
运行模型:
ollama run myqwen2
生成函数参数
安装依赖
!pip install scipy --quiet !pip install tenacity --quiet !pip install tiktoken --quiet !pip install termcolor --quiet !pip install openai --quiet
使用OpenAI的API格式调用本地部署的qwen2模型
import json import openai from tenacity import retry, wait_random_exponential, stop_after_attempt from termcolor import colored MODEL = "myqwen2" client = openai.OpenAI( base_url="http://127.0.0.1:11434/v1", api_key = "None" )
实用工具
首先,让我们定义一些实用工具,用于调用聊天完成 API 以及维护和跟踪对话状态。
@retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3)) def chat_completion_request(messages, tools=None, tool_choice=None, model=MODEL): try: response = client.chat.completions.create( model=model, messages=messages, tools=tools, tool_choice=tool_choice, ) return response except Exception as e: print("Unable to generate ChatCompletion response") print(f"Exception: {e}") return e
def pretty_print_conversation(messages): role_to_color = { "system": "red", "user": "green", "assistant": "blue", "function": "magenta", } for message in messages: if message["role"] == "system": print(colored(f"system: {message['content']}\n", role_to_color[message["role"]])) elif message["role"] == "user": print(colored(f"user: {message['content']}\n", role_to_color[message["role"]])) elif message["role"] == "assistant" and message.get("function_call"): print(colored(f"assistant: {message['function_call']}\n", role_to_color[message["role"]])) elif message["role"] == "assistant" and not message.get("function_call"): print(colored(f"assistant: {message['content']}\n", role_to_color[message["role"]])) elif message["role"] == "function": print(colored(f"function ({message['name']}): {message['content']}\n", role_to_color[message["role"]]))
基本概念(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#basic-concepts)
这里假设了一个天气 API,并设置了一些函数规范和它进行交互。将这些函数规范传递给 Chat API,以便模型可以生成符合规范的函数参数。
tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "format"], }, } }, { "type": "function", "function": { "name": "get_n_day_weather_forecast", "description": "Get an N-day weather forecast", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, "num_days": { "type": "integer", "description": "The number of days to forecast", } }, "required": ["location", "format", "num_days"] }, } }, ]
如果我们向模型询问当前的天气情况,它将会反问,希望获取到进一步的更多的参数信息。
messages = [] messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."}) messages.append({"role": "user", "content": "hi ,can you tell me what's the weather like today"}) chat_response = chat_completion_request( messages, tools=tools ) assistant_message = chat_response.choices[0].message messages.append(assistant_message) assistant_message
ChatCompletionMessage(content='Of course, I can help with that. To provide accurate information, could you please specify the city and state you are interested in?', role='assistant', function_call=None, tool_calls=None)
一旦我们通过对话提供缺失的参数信息,模型就会为我们生成适当的函数参数。
messages.append({"role": "user", "content": "I'm in Glasgow, Scotland."}) chat_response = chat_completion_request( messages, tools=tools ) assistant_message = chat_response.choices[0].message messages.append(assistant_message) assistant_message
ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_qq8e5z9w', function=Function(arguments='{"location":"Glasgow, Scotland"}', name='get_current_weather'), type='function')])
通过不同的提示词,我们可以让它反问不同的问题以获取函数参数信息。
messages = [] messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."}) messages.append({"role": "user", "content": "can you tell me, what is the weather going to be like in Glasgow, Scotland in next x days"}) chat_response = chat_completion_request( messages, tools=tools ) assistant_message = chat_response.choices[0].message messages.append(assistant_message) assistant_message
ChatCompletionMessage(content='Sure, I can help with that. Could you please specify how many days ahead you want to know the weather forecast for Glasgow, Scotland?', role='assistant', function_call=None, tool_calls=None)
messages.append({"role": "user", "content": "5 days"}) chat_response = chat_completion_request( messages, tools=tools ) chat_response.choices[0]
Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_b7f3j7im', function=Function(arguments='{"location":"Glasgow, Scotland","num_days":5}', name='get_n_day_weather_forecast'), type='function')]))
支持一次提问中,并行调用多次函数
messages = [] messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."}) messages.append({"role": "user", "content": "what is the weather going to be like in San Francisco and Glasgow over the next 4 days"}) chat_response = chat_completion_request( messages, tools=tools, model=MODEL ) assistant_message = chat_response.choices[0].message.tool_calls assistant_message
[ChatCompletionMessageToolCall(id='call_vei89rz3', function=Function(arguments='{"location":"San Francisco, CA","num_days":4}', name='get_n_day_weather_forecast'), type='function'),
ChatCompletionMessageToolCall(id='call_4lgoubee', function=Function(arguments='{"location":"Glasgow, UK","num_days":4}', name='get_n_day_weather_forecast'), type='function')]
在这个示例中,演示如何执行输入由模型生成的函数,并使用它来实现可以为我们解答有关数据库的问题的代理。
本文使用Chinook 示例数据库(https://www.sqlitetutorial.net/sqlite-sample-database/)。
指定执行 SQL 查询的函数(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#specifying-a-function-to-execute-sql-queries)
首先,让我们定义一些有用的函数来从 SQLite 数据库中提取数据。
import sqlite3 conn = sqlite3.connect("data/Chinook.db") print("Opened database successfully")
def get_table_names(conn): """Return a list of table names.""" table_names = [] tables = conn.execute("SELECT name FROM sqlite_master WHERE type='table';") for table in tables.fetchall(): table_names.append(table[0]) return table_names def get_column_names(conn, table_name): """Return a list of column names.""" column_names = [] columns = conn.execute(f"PRAGMA table_info('{table_name}');").fetchall() for col in columns: column_names.append(col[1]) return column_names def get_database_info(conn): """Return a list of dicts containing the table name and columns for each table in the database.""" table_dicts = [] for table_name in get_table_names(conn): columns_names = get_column_names(conn, table_name) table_dicts.append({"table_name": table_name, "column_names": columns_names}) return table_dicts
现在可以使用这些实用函数来提取数据库模式的表示。
database_schema_dict = get_database_info(conn) database_schema_string = "\n".join( [ f"Table: {table['table_name']}\nColumns: {', '.join(table['column_names'])}" for table in database_schema_dict ] )
与之前一样,我们将为希望 API 为其生成参数的函数定义一个函数规范。请注意,我们正在将数据库模式插入到函数规范中。这对于模型了解这一点很重要。
tools = [ { "type": "function", "function": { "name": "ask_database", "description": "Use this function to answer user questions about music. Input should be a fully formed SQL query.", "parameters": { "type": "object", "properties": { "query": { "type": "string", "description": f""" SQL query extracting info to answer the user's question. SQL should be written using this database schema: {database_schema_string} The query should be returned in plain text, not in JSON. """, } }, "required": ["query"], }, } } ]
执行 SQL 查询(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#executing-sql-queries)
现在让我们实现实际执行数据库查询的函数。
def ask_database(conn, query): """Function to query SQLite database with a provided SQL query.""" try: results = str(conn.execute(query).fetchall()) except Exception as e: results = f"query failed with error: {e}" return results
使用 Chat Completions API 调用函数的步骤:(https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models#steps-to-invoke-a-function-call-using-chat-completions-api)
步骤 1:向模型提示可能导致模型选择要使用的工具的内容。工具的描述(例如函数名称和签名)在“工具”列表中定义,并在 API 调用中传递给模型。如果选择,函数名称和参数将包含在响应中。
步骤 2:通过编程检查模型是否想要调用函数。如果是,则继续执行步骤 3。
步骤 3:从响应中提取函数名称和参数,使用参数调用该函数。将结果附加到消息中。
步骤 4:使用消息列表调用聊天完成 API 以获取响应。
messages = [{ "role":"user", "content": "What is the name of the album with the most tracks?" }] response = client.chat.completions.create( model='myqwen2', messages=messages, tools= tools, tool_choice="auto" ) # Append the message to messages list response_message = response.choices[0].message messages.append(response_message) print(response_message)
ChatCompletionMessage(content='', role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_23nnhlv6', function=Function(arguments='{"query":"SELECT Album.Title FROM Album JOIN Track ON Album.AlbumId = Track.AlbumId GROUP BY Album.Title ORDER BY COUNT(*) DESC LIMIT 1"}', name='ask_database'), type='function')])
# Step 2: determine if the response from the model includes a tool call. tool_calls = response_message.tool_calls if tool_calls: # If true the model will return the name of the tool / function to call and the argument(s) tool_call_id = tool_calls[0].id tool_function_name = tool_calls[0].function.name tool_query_string = json.loads(tool_calls[0].function.arguments)['query'] # Step 3: Call the function and retrieve results. Append the results to the messages list. if tool_function_name == 'ask_database': results = ask_database(conn, tool_query_string) messages.append({ "role":"tool", "tool_call_id":tool_call_id, "name": tool_function_name, "content":results }) # Step 4: Invoke the chat completions API with the function response appended to the messages list # Note that messages with role 'tool' must be a response to a preceding message with 'tool_calls' model_response_with_function_call = client.chat.completions.create( model="myqwen2", messages=messages, ) # get a new response from the model where it can see the function response print(model_response_with_function_call.choices[0].message.content) else: print(f"Error: function {tool_function_name} does not exist") else: # Model did not identify a function to call, result can be returned to the user print(response_message.content)
The album "Greatest Hits" contains the most tracks
点击链接👇跳转千问 2 模型
https://www.modelscope.cn/models?name=qwen2&page=1?from=alizishequ__text