谷歌发布MediaPipe LLM Inference API,28亿参数模型本地跑

简介: 【2月更文挑战第24天】谷歌发布MediaPipe LLM Inference API,28亿参数模型本地跑

e6246b5df078536acaf715a8a1710da3.jpeg
在人工智能领域,模型的规模和性能一直是推动技术进步的关键因素。随着计算能力的提升和算法的优化,AI模型变得越来越庞大,它们能够处理更复杂的任务,提供更精准的服务。然而,这些大模型往往需要强大的硬件支持,限制了它们在移动设备和个人电脑上的应用。谷歌最新发布的MediaPipe LLM Inference API,正是为了打破这一限制,让28亿参数的大模型也能在本地设备上流畅运行。

这一API的推出,是谷歌在跨设备AI技术领域的又一重要里程碑。它不仅简化了开发者在不同设备上部署AI模型的过程,还通过一系列技术创新,实现了模型在不同平台上的高效运行。这些技术包括新的操作、量化、缓存和权重共享等,它们共同作用,使得AI大模型能够在网页、安卓、iOS等设备上无缝运行。谷歌的这一举措,无疑为AI技术的普及和应用开辟了新的道路。

MediaPipe LLM Inference API目前支持的模型包括Gemma、Phi 2、Falcon和Stable LM,这些模型的参数规模从1B到3B不等。这些模型不仅能够在网页上运行,还能在安卓和iOS设备上提供服务。开发者可以根据需要选择使用基本模型权重,或者利用社区微调版,甚至使用自己的数据进行微调,以适应特定的应用场景。这种灵活性,使得AI模型能够更好地服务于用户,满足多样化的需求。

在iOS设备上,尽管目前只有Gemma 2B(int4)模型能够运行,但谷歌正在积极努力,以期让更多模型能够在iOS平台上启用。这一努力,体现了谷歌对于跨平台兼容性的重视,也预示着未来AI技术将更加普及和便捷。

为了确保模型能够在设备上高效运行,谷歌对MediaPipe LLM Inference API进行了细致的优化。这些优化措施包括权重共享、优化的全连接操作、平衡计算和内存使用、自定义操作符、伪动态性和优化的KV缓存布局等。这些技术的应用,不仅提高了模型的运行效率,还保证了在不同设备上的兼容性和稳定性。

谷歌的这一创新,不仅仅是技术上的突破,更是对AI大模型跨设备运行的一次大胆尝试。它将推动AI技术在更多领域的应用,为用户带来更加智能化的体验。随着谷歌计划将MediaPipe LLM Inference API扩展到更多平台和模型,未来的AI技术将更加强大,更加贴近人们的生活。

目录
相关文章
|
3月前
|
数据采集 自然语言处理 供应链
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
数据投毒通过在训练数据中植入恶意样本,将后门永久嵌入大模型,仅需数百份毒样本即可触发数据泄露、越狱等行为,防御需结合溯源、聚类分析与自动化检测。
352 2
LLM安全新威胁:为什么几百个毒样本就能破坏整个模型
|
3月前
|
机器学习/深度学习 缓存 监控
139_剪枝优化:稀疏模型压缩 - 分析结构化剪枝的独特速度提升与LLM部署加速实践
随着大语言模型(LLM)规模的不断增长,模型参数量已从最初的数亿扩展到数千亿甚至万亿级别。这种规模的模型在推理过程中面临着巨大的计算和内存挑战,即使在最先进的硬件上也难以高效部署。剪枝优化作为一种有效的模型压缩技术,通过移除冗余或不重要的参数,在保持模型性能的同时显著减少计算资源需求。
|
3月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
912 2
|
3月前
|
存储 监控 安全
132_API部署:FastAPI与现代安全架构深度解析与LLM服务化最佳实践
在大语言模型(LLM)部署的最后一公里,API接口的设计与安全性直接决定了模型服务的可用性、稳定性与用户信任度。随着2025年LLM应用的爆炸式增长,如何构建高性能、高安全性的REST API成为开发者面临的核心挑战。FastAPI作为Python生态中最受青睐的Web框架之一,凭借其卓越的性能、强大的类型安全支持和完善的文档生成能力,已成为LLM服务化部署的首选方案。
|
3月前
|
机器学习/深度学习 缓存 PyTorch
131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
118_LLM模型量化与压缩:从理论到2025年实践技术详解
大型语言模型(LLM)在自然语言处理领域取得了前所未有的成功,但模型规模的快速增长带来了巨大的计算和存储挑战。一个典型的大型语言模型(如GPT-4或LLaMA 3)可能包含数千亿甚至万亿参数,需要数百GB甚至TB级的存储空间,并且在推理时需要大量的计算资源。这种规模使得这些模型难以在边缘设备、移动设备甚至资源有限的云服务器上部署和使用。
|
3月前
|
机器学习/深度学习 存储 缓存
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。
|
3月前
|
机器学习/深度学习 人工智能 算法
62_模型融合:ensemble LLM技巧
在2025年的AI生态中,大语言模型(LLM)已成为技术创新的核心引擎,但单一模型在面对复杂任务时往往表现出局限性。不同模型由于训练数据、架构设计和优化目标的差异,在各领域展现出独特优势:模型A可能擅长逻辑推理,模型B在创意写作上更出色,而模型C则在事实性问答中准确率更高。
|
3月前
|
缓存 人工智能 并行计算
59_实时性模型:选择低延迟LLM
在当今快速发展的人工智能领域,大型语言模型(LLM)的应用正迅速渗透到各个行业。随着企业对AI响应速度的要求不断提高,低延迟LLM的选择与优化已成为技术团队面临的关键挑战。实时聊天机器人、智能客服、自动驾驶辅助系统等场景对响应时间提出了极高的要求,毫秒级的延迟差异可能直接影响用户体验和业务效率。2025年,随着推理优化技术的突破性进展,低延迟LLM已不再是难以企及的目标,而是成为实际生产环境中的标准配置。
|
3月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。