1.torch2trt–trt模型调用
通过torch2trt的官方代码找到加载这个trt文件封装好了的函数TRTModule,可直接通过model_trt.load_state_dict(torch.load(‘mode.trt’))得到。
from torch import TRTModule
engine_path='./trt模型地址'
def read_model():
model_trt=TRTModule()
model_trt.load_State_dict(torch.load(engine_path))
return model_trt
2.onnx2trt–trt模型调用
import pycuda.driver as cuda
import pycuda.autoinit
import cv2,time
import numpy as np
import os
import tensorrt as trt
TRT_LOGGER = trt.Logger()
engine_file_path = "/home/z/Documents/face_detect_yolov4_yolov4tiny_ssd-master/yolov4-tiny.trt"
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs. 分配引擎所需的所有缓冲区
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
def do_inference_v2(context, bindings, inputs, outputs, stream):
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
return [out.host for out in outputs]
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime,\
runtime.deserialize_cuda_engine(f.read()) as engine, engine.create_execution_context() as context:
inputs, outputs, bindings, stream = allocate_buffers(engine)
#print('Len of inputs:',len(inputs))
#print('Len of outputs:',len(outputs))
image = cv2.imread('4.jpg',cv2.IMREAD_GRAYSCALE)
image=cv2.resize(image,(28,28))
print(image.shape)
image=image[np.newaxis,np.newaxis,:,:].astype(np.float32)
inputs[0].host = image
print('开始推理')
start = time.time()
trt_outputs =do_inference_v2(context, bindings=bindings, \
inputs=inputs, outputs=outputs, stream=stream)
finish = time.time()
#print('inference time {} sec'.format(finish - start))
print(trt_outputs)