Jetson学习笔记(三):多种模型文件的调用部署

简介: 文章介绍了如何在Jetson平台上使用torch2trt和onnx2trt工具来部署和调用TensorRT模型。

在这里插入图片描述

1.torch2trt–trt模型调用

通过torch2trt的官方代码找到加载这个trt文件封装好了的函数TRTModule,可直接通过model_trt.load_state_dict(torch.load(‘mode.trt’))得到。

from torch import TRTModule
engine_path='./trt模型地址'
def read_model():
    model_trt=TRTModule()
    model_trt.load_State_dict(torch.load(engine_path))
    return model_trt

2.onnx2trt–trt模型调用

import pycuda.driver as cuda
import pycuda.autoinit
import cv2,time
import numpy as np
import os
import tensorrt as trt

TRT_LOGGER = trt.Logger()
engine_file_path = "/home/z/Documents/face_detect_yolov4_yolov4tiny_ssd-master/yolov4-tiny.trt"

class HostDeviceMem(object):
    def __init__(self, host_mem, device_mem):
        self.host = host_mem
        self.device = device_mem

    def __str__(self):
        return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)

    def __repr__(self):
        return self.__str__()
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs. 分配引擎所需的所有缓冲区
def allocate_buffers(engine):
    inputs = []
    outputs = []
    bindings = []
    stream = cuda.Stream()
    for binding in engine:
        size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
        dtype = trt.nptype(engine.get_binding_dtype(binding))
        # Allocate host and device buffers
        host_mem = cuda.pagelocked_empty(size, dtype)
        device_mem = cuda.mem_alloc(host_mem.nbytes)
        # Append the device buffer to device bindings.
        bindings.append(int(device_mem))
        # Append to the appropriate list.
        if engine.binding_is_input(binding):
            inputs.append(HostDeviceMem(host_mem, device_mem))
        else:
            outputs.append(HostDeviceMem(host_mem, device_mem))
    return inputs, outputs, bindings, stream

def do_inference_v2(context, bindings, inputs, outputs, stream):
    # Transfer input data to the GPU.
    [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    # Run inference.
    context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
    # Transfer predictions back from the GPU.
    [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    # Synchronize the stream
    stream.synchronize()
    # Return only the host outputs.
    return [out.host for out in outputs]

with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime,\
runtime.deserialize_cuda_engine(f.read()) as engine, engine.create_execution_context() as context:
    inputs, outputs, bindings, stream = allocate_buffers(engine)
    #print('Len of inputs:',len(inputs))
    #print('Len of outputs:',len(outputs))

    image = cv2.imread('4.jpg',cv2.IMREAD_GRAYSCALE)
    image=cv2.resize(image,(28,28))
    print(image.shape)
    image=image[np.newaxis,np.newaxis,:,:].astype(np.float32)
    inputs[0].host = image
    print('开始推理')
    start = time.time()
    trt_outputs =do_inference_v2(context, bindings=bindings, \
        inputs=inputs, outputs=outputs, stream=stream)
    finish = time.time()
    #print('inference time {} sec'.format(finish - start))
    print(trt_outputs)
目录
相关文章
|
计算机视觉 Python
Jetson 学习笔记(六):cv2调用CSI摄像头(jetson nx/nano)、打开海康摄像头、打开电脑摄像头
这篇文章介绍了在不同平台上接入并显示摄像头视频流的方法,包括海康摄像头的RTSP连接、电脑内置摄像头的直接读取、Jetson NX/Nano通过CSI接口和USB接口的操作,以及Jetson Nano通过Gstreamer管道和jetcam库的使用,并提供了相应的代码示例。
1327 1
Jetson学习笔记(二):TensorRT 查看模型的输入输出
这篇博客介绍了如何使用TensorRT查看模型的输入输出,并通过代码示例展示了如何获取和验证模型的输入输出信息。
646 5
|
小程序 安全 网络协议
Nginx配置小程序域名(HTTPS
Nginx配置小程序域名(HTTPS
Nginx配置小程序域名(HTTPS
|
PyTorch 算法框架/工具
Jetson学习笔记(四):pth(torch模型文件)转trt(tensorrt引擎文件)实操
关于如何使用torch2trt工具将PyTorch模型转换为TensorRT引擎文件的实操指南。
777 1
Jetson学习笔记(四):pth(torch模型文件)转trt(tensorrt引擎文件)实操
|
并行计算 Ubuntu 开发工具
Jetson学习笔记(一):jetson 系列镜像下载、烧写、设置散热风扇、中文包、pip、中转英目录、软件源、显示CSI摄像头
关于NVIDIA Jetson系列设备的入门学习笔记,涵盖了从下载镜像、烧录、设置散热风扇、安装中文语言包、配置环境变量、安装CUDA和OpenCV,到显示CSI摄像头和增加Swap交换空间的详细步骤。
1436 0
Jetson学习笔记(一):jetson 系列镜像下载、烧写、设置散热风扇、中文包、pip、中转英目录、软件源、显示CSI摄像头
jetson错误(三):E: 有未能满足的依赖关系。请尝试不指明软件包的名字来运行“apt --fix-broken install”(也可以指定一个解决办法
在NVIDIA Jetson平台上遇到“未能满足的依赖关系”错误时,可以通过运行“sudo apt-get -f install”或“sudo apt-get --fix-broken install”命令来解决。
1227 2
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
368 1
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
769 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
人工智能 架构师 搜索推荐
AI Agent【项目实战】:MetaGPT遇上元编程,重塑复杂多智能体协作的边界
【7月更文挑战第4天】AI Agent【项目实战】:MetaGPT遇上元编程,重塑复杂多智能体协作的边界
AI Agent【项目实战】:MetaGPT遇上元编程,重塑复杂多智能体协作的边界
|
机器学习/深度学习 传感器 监控
红外小目标检测:基于深度学习
本文介绍了红外小目标检测技术的优势、基本原理及常用方法,包括背景抑制、滤波、模型和深度学习等,并探讨了多传感器融合的应用。通过一个基于深度学习的实战案例,展示了从数据准备到模型训练的全过程。最后,文章展望了该技术在军事、安防、交通等领域的广泛应用及未来发展趋势。