Fish Speech 1.5:Fish Audio 推出的零样本语音合成模型,支持13种语言

简介: Fish Speech 1.5 是由 Fish Audio 推出的先进文本到语音(TTS)模型,支持13种语言,具备零样本和少样本语音合成能力,语音克隆延迟时间不到150毫秒。该模型基于深度学习技术如Transformer、VITS、VQVAE和GPT,具有高度准确性和快速合成能力,适用于多种应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 多语言支持:支持13种语言,包括英语、日语、韩语和中文。
  2. 零样本和少样本语音合成:基于10到30秒的声音样本生成高质量语音。
  3. 无音素依赖:不依赖音素,具有更强的泛化能力。

正文(附运行示例)

Fish Speech 1.5 是什么

公众号: 蚝油菜花 - fish-speech

Fish Speech 1.5 是 Fish Audio 推出的文本到语音(TTS)模型,基于深度学习技术如Transformer、VITS、VQVAE和GPT等。该模型支持英语、日语、韩语、中文等13种语言,具备零样本和少样本语音合成能力,只需10到30秒的声音样本即可模仿高质量语音。

Fish Speech 1.5 的语音克隆功能延迟时间不到150毫秒,模型泛化能力强,无需依赖音素,能处理任何语言脚本。即将推出的实时无缝对话功能,用户能随时随地进行交互式聊天。Fish Speech 1.5 开源预训练模型,支持本地部署,适用于Linux、Windows和macOS系统。

Fish Speech 1.5 的主要功能

  • 多语言支持:支持包括英语、日语、韩语、中文在内的13种语言,能处理多种语言的文本。
  • 零样本和少样本语音合成:基于极短的声音样本(10到30秒)模仿并生成高质量的语音合成输出。
  • 无音素依赖:与传统语音合成模型不同,Fish Speech 1.5不依赖音素,具有更强的泛化能力。
  • 高度准确:对于一篇5分钟的英文文章,错误率低至2%。
  • 快速合成:在高性能硬件上,能实现快速的实时语音合成。

Fish Speech 1.5 的技术原理

  • Transformer架构:一种基于自注意力机制的模型,能处理序列数据,被广泛应用于语言处理任务中。
  • VITS(Vector Quantized Transformer-based Speech Synthesis):一种基于Transformer的语音合成模型,基于量化技术提高合成效率和质量。
  • VQVAE(Vector Quantized Variational Autoencoder):一种变分自编码器,基于量化技术学习数据的压缩表示。
  • GPT(Generative Pre-trained Transformer):一种预训练语言模型,基于大量文本数据训练,生成连贯和自然的文本。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
算法 语音技术
基于MFCC特征提取和HMM模型的语音合成算法matlab仿真
基于MFCC特征提取和HMM模型的语音合成算法matlab仿真
|
24天前
|
人工智能 数据处理 语音技术
LatentLM:微软联合清华大学推出的多模态生成模型,能够统一处理和生成图像、文本、音频和语音合成
LatentLM是由微软研究院和清华大学联合推出的多模态生成模型,能够统一处理离散和连续数据,具备高性能图像生成、多模态大型语言模型集成等功能,展现出卓越的多模态任务处理能力。
80 29
LatentLM:微软联合清华大学推出的多模态生成模型,能够统一处理和生成图像、文本、音频和语音合成
|
5月前
|
自然语言处理 语音技术 开发者
ChatTTS超真实自然的语音合成模型
ChatTTS超真实自然的语音合成模型
171 3
|
6月前
|
机器学习/深度学习 TensorFlow 语音技术
使用Python实现深度学习模型:语音合成与语音转换
【7月更文挑战第19天】 使用Python实现深度学习模型:语音合成与语音转换
137 1
|
7月前
|
语音技术
【手把手教学】最新ChatTTS语音合成项目使用指南【附所有源码与模型】
【手把手教学】最新ChatTTS语音合成项目使用指南【附所有源码与模型】
|
8月前
|
自然语言处理 文字识别 Linux
ModelScope运行语音合成模型的官网代码示例报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
205 0
|
8月前
|
自然语言处理 搜索推荐 PyTorch
ModelScope问题之NoteBook训练个性化语音合成模型报错如何解决
ModelScope训练是指在ModelScope平台上对机器学习模型进行训练的活动;本合集将介绍ModelScope训练流程、模型优化技巧和训练过程中的常见问题解决方法。
116 0
|
8月前
|
监控 语音技术 异构计算
使用开源的模型(像speech_sambert-hifigan_tts_zhida_zh-cn_16k)进行语音合成任务的推理时,推理速度太慢了,500字大约需要1分钟,为什么会这么慢
使用开源的模型(像speech_sambert-hifigan_tts_zhida_zh-cn_16k)进行语音合成任务的推理时,推理速度太慢了,500字大约需要1分钟,为什么会这么慢
598 2
|
机器学习/深度学习 人工智能 自然语言处理
Tacotron2、GST、Glow-TTS、Flow-TTS…你都掌握了吗?一文总结语音合成必备经典模型(四)
Tacotron2、GST、Glow-TTS、Flow-TTS…你都掌握了吗?一文总结语音合成必备经典模型
1244 0
|
机器学习/深度学习 自然语言处理 前端开发
Tacotron2、GST、Glow-TTS、Flow-TTS…你都掌握了吗?一文总结语音合成必备经典模型(二)
Tacotron2、GST、Glow-TTS、Flow-TTS…你都掌握了吗?一文总结语音合成必备经典模型
461 1

热门文章

最新文章