【AI系统】SIMD & SIMT 与 CUDA 关系

简介: 本文深入解析了AI芯片中SIMD和SIMT的计算本质,基于NVIDIA CUDA实现的对比,探讨了不同并行编程模型,包括串行(SISD)、数据并行(SIMD)和多线程(MIMD/SPMD)。文章详细介绍了各模型的特点及应用场景,特别强调了英伟达GPU中的SIMT机制如何通过SPMD编程模型实现高效并行计算,以及SIMD、SIMT、SPMD之间的关系和区别。

前面的文章对 AI 芯片 SIMD 和 SIMT 计算本质进行了分析,结合 NVIDIA CUDA 实现对 SIMD 和 SIMT 进行了对比,本文将对不同并行的编程方式进行讲解,以英伟达 GPU 为例,讲解 GPU 的编程模型。

实现并行的编程方式

从指令级别的执行方式来看,一共有三种不同的编程模型,串行(SISD)、数据并行(SIMD)和多线程(MIMD/SPMD):

  • SISD(Single Instruction, Single Data):程序按顺序执行,每条指令依次处理单个数据。这是传统的串行编程模型,适合于简单的顺序执行任务,如传统的单线程程序。这种方式适合于简单的任务和小规模数据处理,但在处理大规模数据或需要高性能的情况下,串行编程效率较低。

  • SIMD(Single Instruction, Multiple Data):程序通过向量化或并行化指令来处理多个数据,每个处理单元独立执行相同的任务,但是处理不同的数据。程序员可以编写单一指令,但该指令会同时应用于多个数据元素。这种模型适合于需要高度并行化处理的任务,如图像处理或科学计算。

  • MIMD(Multiple Instruction, Multiple Data)/SPMD(Single Program, Multiple Data):多个处理器同时执行不同的指令,处理不同的数据,充分利用多核处理器的性能。每个处理器可以独立执行不同的程序,也可以执行相同的程序但处理不同的数据。这种模型适合于需要并发执行多个任务的场景,如分布式系统或并行计算。

从编程模型的角度看,选择合适的并行计算模型可以更好地利用硬件资源,提高程序的性能和效率。

串行执行 SISD

串行执行与 SISD(Single Instruction, Single Data)类似,以向量相加 $C[i] = A[i] + B[i]$ 的操作来举例说明,每一次 for 循环(Iter.i),都要执行一次向量 A 和向量 B 相加之后得到向量 C 的操作,在 CPU 中经常使用这种方式。一般在 CPU 中会采用流水执行,乱序执行和超长指令集(VLIW)架构来提高计算效率。

for (int i = 0; i < N; ++i) 
{
   
    C[i] = A[i] + B[i];
}

流水执行 PPE

流水执行 PPE(Pipeline Execution)是流水执行中的一种处理器架构,指令被分成多个阶段(如取指、译码、执行、访存、写回),每个阶段由一个专门的处理单元负责执行,从而实现指令的并行处理。程序执行时,多条指令重叠进行操作的一种任务分解技术,将取值-->译码-->执行分别放在未使用流水线和使用流水线中进行指令执行,在未使用流水线时每次 for 循环都要占用独立的时间分别进行取值-->译码-->执行相关操作,当使用流水线时,充分利用空余的时间去同时执行不同的指令操作,提高了指令的并行度。

流水执行 PPE

乱序执行 OOE

乱序执行(Out-of-Order Execution,OOE)中,处理器可以在不改变程序语义的情况下,通过重新排序指令的执行顺序来提高指令级并行度和性能,处理器会根据指令的依赖关系和可用资源来动态调整指令的执行顺序。当没有采用乱序执行时首先对指令 1 进行取值、译码、执行和写回,然后再进行下一个指令 2 同样的操作,此时在 CPU 执行周期内会有大量的空闲。

没有采用乱序执行

因此采用乱序执行,在 CPU 空闲时间执行指令 2,由于指令 4 的执行需要指令 1 在写回结果之后,所以需要把依赖性指令移到独立指令后,在指令 1 完全执行之后再执行指令 4,同时 for 循环由硬件通过指令动态展开。

采用乱序执行

超长指令集 VLIW

超长指令集(Very Long Instruction Word,VLIW)是一种处理器架构,其特点是一条指令可以同时包含多个操作,这些操作可以在同一时钟周期内并行执行。VLIW 处理器在编译时就将多个操作打包成一条指令,因此并行执行指令由编译器来完成,编译器的优化能力直接影响程序在超长指令字处理器上的性能,由硬件执行编译之后的并行指令,从而提高指令级并行度和性能。

超长指令字

数据并行 SIMD

数据并行主要通过循环中的每个迭代独立实现,在程序层面,程序员编写 SIMD 指令或编译器生成 SIMD 指令,在不同数据的迭代中执行相同指令,在硬件层面通过提供 SIMD 较宽的 ALU 执行单元。同样以 for 循环计算向量加法为例,在执行 VLD: A to V1 时,迭代 1(Iter.1)读取的数据是 A[0],迭代 2(Iter.2)读取的数据是 A[1],之后的 VLD、VADD 和 VST 指令也一样,硬件每次执行的指令相同,但是读取的数据不同,从而实现数据并行。

SIMD

多线程 SPMD

SPMD(Single Program Multiple Data)是一种并行计算模型,多线程 SPMD 指的是在 SPMD 模型中使用多个线程来执行并行计算任务。在多线程 SPMD 中,每个线程(Thread i)都执行相同的程序,但处理不同的数据,通过并发执行来加速计算过程。SPMD 通过循环中的每个迭代独立实现,在程序上,程序员或编译器生成线程来执行每次迭代,使得每个线程在不同的数据上执行相同的计算,SIMT 独立的线程管理硬件来使能硬件处理方式。

SPMD

SPMD 和 SIMD 不同之处在于,SIMD 在相同指令下执行不同的数据实现并行,而 SPMD 则是提出使用线程来管理每个迭代,SPMD 最终执行在 SIMD 机器上,因此发展出新的单指令多线程硬件执行模式 SIMT(Single Instruction Multiple Thread)。

英伟达 SIMT 机制

GPU 的 SIMT 实际上是具体硬件执行 SIMD 指令,采用并行编程模式使用 SPMD 来控制线程的方式。每个线程对不同的数据执行相同的指令代码,同时每个线程都有独立的上下文。执行相同指令时一组线程由硬件动态分为一组 Wrap,硬件 Warp 实际上是由 SIMD 操作形成的,由 SIMT 构成前端并在 SIMD 后端中执行。

GPU SIMT & SIMD

在英伟达 GPU 中,Warp 是执行相同指令的线程集合,作为 GPU 的硬件 SM 调度单位,Warp 里的线程执行 SIMD,因此每个 Warp 中就能实现单指令多数据。CUDA 的编程模式实际上是 SPMD,因此从编程人员的视角来看只需要实现单程序多数据,具体到 GPU 的硬件执行模式则是采用了 SIMT,硬件实现单指令多线程。

英伟达 GPU SIMT

三者间关系

SISD、SIMD 和 SIMT 按照时间轴的执行方式如下所示。

SISD、SIMD 和 SIMT 时序对比

因此综合前面的分析,SISD、SIMD、SIMT、SPMD 和 DSA 相关概念就有了一个清晰的定义和区分:

  • SIMD:指令的执行方式和对应映射的硬件体系结构。

  • SIMT:以 SIMD 指令为主,具有 Warp Scheduler 等硬件模块,支持 SPMD 编程模型的硬件架构。

  • SPMD:一种具体的并行编程模型,类似于 CUDA 所提供的编程模式。

  • DSA:具体的特殊硬件架构,NPU/TPU 等专门针对 AI 的特殊硬件架构,应用于大规模数据处理、分布式存储等场景。

值得注意的是,NVIDIA 在 GPU 架构设计中加入 Tensor Core,专门用于神经网络矩阵计算,同时支持混合精度计算,因此 NVIDIA GPU 也变成 SIMT+DSA 的模式。

方式 硬件架构 or 执行模型 方式
执行模型 Traditional SIMD (1)包含单条指令执行;(2)指令集架构(Instruction Set Architecture,ISA)包含矢量/SMD 指令信息;(3)SIMD 指令中的锁同步操作,即顺序指令执行;(4)编程模型是直接控制指令,没有额外线程控制,软件层面需要知道数据长度
执行模型 Warp-base SIMD (SIMT) (1)以 SIMD 方式执行的多个标量线程组成;(2)ISA 是标量,SIMD 操作可以动态形成;(3)每条线程都可以单独处理,启用多线程和灵活的线程动态分组;(4)本质上,是在 SIMD 硬件上实现 SPMD 编程模型,CUDA 采用了这种方式
编程模型 SPMD (1)通过单个程序,控制多路数据;(2)针对不同的数据,单个线程执行相同的过程代码;(3)本质上,多个指令流执行同一个程序;(4)每个程序:1)处理不同数据,2)在运行时可以执行不同的控制流路径;(5)在 SIMD 硬件上以 SPMD 的方式对 GPGPU 进行编程控制,因此出现了 CUDA 编程
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
12天前
|
人工智能 自然语言处理 调度
Casevo:开源的社会传播模拟系统,基于 AI 模拟人类认知、决策和社会交互,预测社会传播现象
Casevo 是中国传媒大学推出的开源社会传播模拟系统,结合大语言模型和多智能体技术,支持复杂社会网络建模与动态交互,适用于新闻传播、社会计算等领域。
72 22
Casevo:开源的社会传播模拟系统,基于 AI 模拟人类认知、决策和社会交互,预测社会传播现象
|
21天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
AigcPanel:开源的 AI 虚拟数字人系统,一键安装开箱即用,支持视频合成、声音合成和声音克隆
AigcPanel 是一款开源的 AI 虚拟数字人系统,支持视频合成、声音克隆等功能,适用于影视制作、虚拟主播、教育培训等多种场景。
154 12
AigcPanel:开源的 AI 虚拟数字人系统,一键安装开箱即用,支持视频合成、声音合成和声音克隆
|
18天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
135 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
3天前
|
人工智能 自然语言处理 数据可视化
校企合作|TsingtaoAI携手潍坊学院,共建AI驱动的党建信息化系统
TsingtaoAI与潍坊学院近日达成合作,正式签署《人工智能党建信息化系统开发》技术开发合同,计划在未来两年内联合开发一套集党员教育、党务管理、党建活动智能化以及数据可视化于一体的智能党建系统。本次合作将充分结合TsingtaoAI在AI大模型领域的技术优势和潍坊学院的学术资源,为推动党建工作的数字化、智能化和高效化注入新的动力。
29 10
|
16天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
69 23
|
25天前
|
人工智能 自然语言处理 并行计算
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
ASAL 是由 Sakana AI 联合 OpenAI 等机构推出的自动化搜索人工生命系统,基于基础模型实现多种搜索机制,扩展了人工生命研究的边界。
105 1
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
|
24天前
|
机器学习/深度学习 传感器 人工智能
开源AI视频监控系统在监狱安全中的应用——实时情绪与行为分析、暴力预警技术详解
针对监狱环境中囚犯情绪波动和复杂人际互动带来的监控挑战,传统CCTV系统难以有效预警暴力事件。AI视频监控系统基于深度学习与计算机视觉技术,实现对行为、情绪的实时分析,尤其在低光环境下表现优异。该系统通过多设备协同、数据同步及自适应训练,确保高精度识别(95%以上)、快速响应(&lt;5秒),并具备24小时不间断运行能力,极大提升了监狱安全管理的效率与准确性。
|
28天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
17天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。

热门文章

最新文章