【AI系统】SIMD & SIMT 与 CUDA 关系

简介: 本文深入解析了AI芯片中SIMD和SIMT的计算本质,基于NVIDIA CUDA实现的对比,探讨了不同并行编程模型,包括串行(SISD)、数据并行(SIMD)和多线程(MIMD/SPMD)。文章详细介绍了各模型的特点及应用场景,特别强调了英伟达GPU中的SIMT机制如何通过SPMD编程模型实现高效并行计算,以及SIMD、SIMT、SPMD之间的关系和区别。

前面的文章对 AI 芯片 SIMD 和 SIMT 计算本质进行了分析,结合 NVIDIA CUDA 实现对 SIMD 和 SIMT 进行了对比,本文将对不同并行的编程方式进行讲解,以英伟达 GPU 为例,讲解 GPU 的编程模型。

实现并行的编程方式

从指令级别的执行方式来看,一共有三种不同的编程模型,串行(SISD)、数据并行(SIMD)和多线程(MIMD/SPMD):

  • SISD(Single Instruction, Single Data):程序按顺序执行,每条指令依次处理单个数据。这是传统的串行编程模型,适合于简单的顺序执行任务,如传统的单线程程序。这种方式适合于简单的任务和小规模数据处理,但在处理大规模数据或需要高性能的情况下,串行编程效率较低。

  • SIMD(Single Instruction, Multiple Data):程序通过向量化或并行化指令来处理多个数据,每个处理单元独立执行相同的任务,但是处理不同的数据。程序员可以编写单一指令,但该指令会同时应用于多个数据元素。这种模型适合于需要高度并行化处理的任务,如图像处理或科学计算。

  • MIMD(Multiple Instruction, Multiple Data)/SPMD(Single Program, Multiple Data):多个处理器同时执行不同的指令,处理不同的数据,充分利用多核处理器的性能。每个处理器可以独立执行不同的程序,也可以执行相同的程序但处理不同的数据。这种模型适合于需要并发执行多个任务的场景,如分布式系统或并行计算。

从编程模型的角度看,选择合适的并行计算模型可以更好地利用硬件资源,提高程序的性能和效率。

串行执行 SISD

串行执行与 SISD(Single Instruction, Single Data)类似,以向量相加 $C[i] = A[i] + B[i]$ 的操作来举例说明,每一次 for 循环(Iter.i),都要执行一次向量 A 和向量 B 相加之后得到向量 C 的操作,在 CPU 中经常使用这种方式。一般在 CPU 中会采用流水执行,乱序执行和超长指令集(VLIW)架构来提高计算效率。

for (int i = 0; i < N; ++i) 
{
   
    C[i] = A[i] + B[i];
}

流水执行 PPE

流水执行 PPE(Pipeline Execution)是流水执行中的一种处理器架构,指令被分成多个阶段(如取指、译码、执行、访存、写回),每个阶段由一个专门的处理单元负责执行,从而实现指令的并行处理。程序执行时,多条指令重叠进行操作的一种任务分解技术,将取值-->译码-->执行分别放在未使用流水线和使用流水线中进行指令执行,在未使用流水线时每次 for 循环都要占用独立的时间分别进行取值-->译码-->执行相关操作,当使用流水线时,充分利用空余的时间去同时执行不同的指令操作,提高了指令的并行度。

流水执行 PPE

乱序执行 OOE

乱序执行(Out-of-Order Execution,OOE)中,处理器可以在不改变程序语义的情况下,通过重新排序指令的执行顺序来提高指令级并行度和性能,处理器会根据指令的依赖关系和可用资源来动态调整指令的执行顺序。当没有采用乱序执行时首先对指令 1 进行取值、译码、执行和写回,然后再进行下一个指令 2 同样的操作,此时在 CPU 执行周期内会有大量的空闲。

没有采用乱序执行

因此采用乱序执行,在 CPU 空闲时间执行指令 2,由于指令 4 的执行需要指令 1 在写回结果之后,所以需要把依赖性指令移到独立指令后,在指令 1 完全执行之后再执行指令 4,同时 for 循环由硬件通过指令动态展开。

采用乱序执行

超长指令集 VLIW

超长指令集(Very Long Instruction Word,VLIW)是一种处理器架构,其特点是一条指令可以同时包含多个操作,这些操作可以在同一时钟周期内并行执行。VLIW 处理器在编译时就将多个操作打包成一条指令,因此并行执行指令由编译器来完成,编译器的优化能力直接影响程序在超长指令字处理器上的性能,由硬件执行编译之后的并行指令,从而提高指令级并行度和性能。

超长指令字

数据并行 SIMD

数据并行主要通过循环中的每个迭代独立实现,在程序层面,程序员编写 SIMD 指令或编译器生成 SIMD 指令,在不同数据的迭代中执行相同指令,在硬件层面通过提供 SIMD 较宽的 ALU 执行单元。同样以 for 循环计算向量加法为例,在执行 VLD: A to V1 时,迭代 1(Iter.1)读取的数据是 A[0],迭代 2(Iter.2)读取的数据是 A[1],之后的 VLD、VADD 和 VST 指令也一样,硬件每次执行的指令相同,但是读取的数据不同,从而实现数据并行。

SIMD

多线程 SPMD

SPMD(Single Program Multiple Data)是一种并行计算模型,多线程 SPMD 指的是在 SPMD 模型中使用多个线程来执行并行计算任务。在多线程 SPMD 中,每个线程(Thread i)都执行相同的程序,但处理不同的数据,通过并发执行来加速计算过程。SPMD 通过循环中的每个迭代独立实现,在程序上,程序员或编译器生成线程来执行每次迭代,使得每个线程在不同的数据上执行相同的计算,SIMT 独立的线程管理硬件来使能硬件处理方式。

SPMD

SPMD 和 SIMD 不同之处在于,SIMD 在相同指令下执行不同的数据实现并行,而 SPMD 则是提出使用线程来管理每个迭代,SPMD 最终执行在 SIMD 机器上,因此发展出新的单指令多线程硬件执行模式 SIMT(Single Instruction Multiple Thread)。

英伟达 SIMT 机制

GPU 的 SIMT 实际上是具体硬件执行 SIMD 指令,采用并行编程模式使用 SPMD 来控制线程的方式。每个线程对不同的数据执行相同的指令代码,同时每个线程都有独立的上下文。执行相同指令时一组线程由硬件动态分为一组 Wrap,硬件 Warp 实际上是由 SIMD 操作形成的,由 SIMT 构成前端并在 SIMD 后端中执行。

GPU SIMT & SIMD

在英伟达 GPU 中,Warp 是执行相同指令的线程集合,作为 GPU 的硬件 SM 调度单位,Warp 里的线程执行 SIMD,因此每个 Warp 中就能实现单指令多数据。CUDA 的编程模式实际上是 SPMD,因此从编程人员的视角来看只需要实现单程序多数据,具体到 GPU 的硬件执行模式则是采用了 SIMT,硬件实现单指令多线程。

英伟达 GPU SIMT

三者间关系

SISD、SIMD 和 SIMT 按照时间轴的执行方式如下所示。

SISD、SIMD 和 SIMT 时序对比

因此综合前面的分析,SISD、SIMD、SIMT、SPMD 和 DSA 相关概念就有了一个清晰的定义和区分:

  • SIMD:指令的执行方式和对应映射的硬件体系结构。

  • SIMT:以 SIMD 指令为主,具有 Warp Scheduler 等硬件模块,支持 SPMD 编程模型的硬件架构。

  • SPMD:一种具体的并行编程模型,类似于 CUDA 所提供的编程模式。

  • DSA:具体的特殊硬件架构,NPU/TPU 等专门针对 AI 的特殊硬件架构,应用于大规模数据处理、分布式存储等场景。

值得注意的是,NVIDIA 在 GPU 架构设计中加入 Tensor Core,专门用于神经网络矩阵计算,同时支持混合精度计算,因此 NVIDIA GPU 也变成 SIMT+DSA 的模式。

方式 硬件架构 or 执行模型 方式
执行模型 Traditional SIMD (1)包含单条指令执行;(2)指令集架构(Instruction Set Architecture,ISA)包含矢量/SMD 指令信息;(3)SIMD 指令中的锁同步操作,即顺序指令执行;(4)编程模型是直接控制指令,没有额外线程控制,软件层面需要知道数据长度
执行模型 Warp-base SIMD (SIMT) (1)以 SIMD 方式执行的多个标量线程组成;(2)ISA 是标量,SIMD 操作可以动态形成;(3)每条线程都可以单独处理,启用多线程和灵活的线程动态分组;(4)本质上,是在 SIMD 硬件上实现 SPMD 编程模型,CUDA 采用了这种方式
编程模型 SPMD (1)通过单个程序,控制多路数据;(2)针对不同的数据,单个线程执行相同的过程代码;(3)本质上,多个指令流执行同一个程序;(4)每个程序:1)处理不同数据,2)在运行时可以执行不同的控制流路径;(5)在 SIMD 硬件上以 SPMD 的方式对 GPGPU 进行编程控制,因此出现了 CUDA 编程
目录
相关文章
|
4天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
21天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
24天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
16天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
11578 11
|
10天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
4064 14
|
16天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
6794 10
|
28天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
14天前
|
人工智能 自然语言处理 前端开发
什么?!通义千问也可以在线开发应用了?!
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
|
3天前
|
机器学习/深度学习 人工智能 安全
通义千问开源的QwQ模型,一个会思考的AI,百炼邀您第一时间体验
Qwen团队推出新成员QwQ-32B-Preview,专注于增强AI推理能力。通过深入探索和试验,该模型在数学和编程领域展现了卓越的理解力,但仍在学习和完善中。目前,QwQ-32B-Preview已上线阿里云百炼平台,提供免费体验。
|
10天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
733 5