Pytorch学习笔记(八):nn.ModuleList和nn.Sequential函数详解

简介: PyTorch中的nn.ModuleList和nn.Sequential函数,包括它们的语法格式、参数解释和具体代码示例,展示了如何使用这些函数来构建和管理神经网络模型。

1.函数语法格式和作用

nn.ModuleList作用:
nn.ModuleList则没有顺序性要求,并且也没有实现forward()方法。为了构建网络模型。
nn.ModuleList函数语言格式:
这个直接看后面具体的代码即可
nn.Sequential作用:
nn.Sequential定义的网络中各层会按照定义的顺序进行级联,因此需要保证各层的输入和输出之间要衔接。而且里面的模块必须是按照顺序进行排列的,所以我们必须确保前一个模块的输出大小和下一个模块的输入大小是一致的,并且nn.Sequential实现了farward()方法,因此可以直接通过类似于x=self.combine(x)的方式实现forward。
nn.Sequential函数语言格式:
这个直接看后面具体的代码即可

2.参数解释

  • x指的是输入矩阵。

  • dim指的是归一化的方式,如果为0是对列做归一化,1是对行做归一化。

3.具体代码

  • nn.ModuleList
  • nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起,这些模块之间并没有什么先后顺序可言
  • 被调用多次的模块,是使用同一组 parameters 的,也就是它们的参数是共享的,无论之后怎么更新。例子如下,虽然在 forward 中我们用了 nn.Linear(10,10) 两次,但是它们只有一组参数。
class net3(nn.Module):
    def __init__(self):
        super(net3, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10,20), nn.Linear(20,30), nn.Linear(5,10)])
    def forward(self, x):
        x = self.linears[2](x)
        x = self.linears[0](x)
        x = self.linears[1](x) 
        return x

net = net3()
print(net)
# net3(
#   (linears): ModuleList(
#     (0): Linear(in_features=10, out_features=20, bias=True)
#     (1): Linear(in_features=20, out_features=30, bias=True)
#     (2): Linear(in_features=5, out_features=10, bias=True)
#   )
# )
input = torch.randn(32, 5)
print(net(input).shape)
# torch.Size([32, 30])
AI 代码解读
class net4(nn.Module):
    def __init__(self):
        super(net4, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(5, 10), nn.Linear(10, 10)])
    def forward(self, x):
        x = self.linears[0](x)
        x = self.linears[1](x)
        x = self.linears[1](x)
        return x

net = net4()
print(net)
# net4(
#   (linears): ModuleList(
#     (0): Linear(in_features=5, out_features=10, bias=True)
#     (1): Linear(in_features=10, out_features=10, bias=True)
#   )
# )
for name, param in net.named_parameters():
    print(name, param.size())
# linears.0.weight torch.Size([10, 5])
# linears.0.bias torch.Size([10])
# linears.1.weight torch.Size([10, 10])
# linears.1.bias torch.Size([10])
AI 代码解读
  • nn.Sequential
  • 不同于 nn.ModuleList,它已经实现了内部的 forward 函数,而且里面的模块必须是按照顺序进行排列的,所以我们必须确保前一个模块的输出大小和下一个模块的输入大小是一致的,
class net5(nn.Module):
    def __init__(self):
        super(net5, self).__init__()
        self.block = nn.Sequential(nn.Conv2d(1,20,5),
                                    nn.ReLU(),
                                    nn.Conv2d(20,64,5),
                                    nn.ReLU())
    def forward(self, x):
        x = self.block(x)
        return x

net = net5()
print(net)
# net5(
#   (block): Sequential(
#     (0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
#     (1): ReLU()
#     (2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
#     (3): ReLU()
#   )
# )
AI 代码解读
目录
打赏
0
1
1
0
86
分享
相关文章
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
122 0
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
892 2
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
本文介绍了PyTorch中的F.softmax()和F.log_softmax()函数的语法、参数和使用示例,解释了它们在进行归一化处理时的作用和区别。
728 1
Pytorch学习笔记(七):F.softmax()和F.log_softmax函数详解
Pytorch学习笔记(六):view()和nn.Linear()函数详解
这篇博客文章详细介绍了PyTorch中的`view()`和`nn.Linear()`函数,包括它们的语法格式、参数解释和具体代码示例。`view()`函数用于调整张量的形状,而`nn.Linear()`则作为全连接层,用于固定输出通道数。
294 0
Pytorch学习笔记(六):view()和nn.Linear()函数详解
Pytorch学习笔记(五):nn.AdaptiveAvgPool2d()函数详解
PyTorch中的`nn.AdaptiveAvgPool2d()`函数用于实现自适应平均池化,能够将输入特征图调整到指定的输出尺寸,而不需要手动计算池化核大小和步长。
585 1
Pytorch学习笔记(五):nn.AdaptiveAvgPool2d()函数详解
Pytorch学习笔记(四):nn.MaxPool2d()函数详解
这篇博客文章详细介绍了PyTorch中的nn.MaxPool2d()函数,包括其语法格式、参数解释和具体代码示例,旨在指导读者理解和使用这个二维最大池化函数。
389 0
Pytorch学习笔记(四):nn.MaxPool2d()函数详解
从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
近期发布的LLaMA 4模型引入混合专家(MoE)架构,以提升效率与性能。尽管社区对其实际表现存在讨论,但MoE作为重要设计范式再次受到关注。本文通过Pytorch从零实现简化版LLaMA 4 MoE模型,涵盖数据准备、分词、模型构建(含词元嵌入、RoPE、RMSNorm、多头注意力及MoE层)到训练与文本生成全流程。关键点包括MoE层实现(路由器、专家与共享专家)、RoPE处理位置信息及RMSNorm归一化。虽规模小于实际LLaMA 4,但清晰展示MoE核心机制:动态路由与稀疏激活专家,在控制计算成本的同时提升性能。完整代码见链接,基于FareedKhan-dev的Github代码修改而成。
29 9
从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
比扩散策略更高效的生成模型:流匹配的理论基础与Pytorch代码实现
扩散模型和流匹配是生成高分辨率数据(如图像和机器人轨迹)的先进技术。扩散模型通过逐步去噪生成数据,其代表应用Stable Diffusion已扩展至机器人学领域形成“扩散策略”。流匹配作为更通用的方法,通过学习时间依赖的速度场将噪声转化为目标分布,适用于图像生成和机器人轨迹生成,且通常以较少资源实现更快生成。 本文深入解析流匹配在图像生成中的应用,核心思想是将图像视为随机变量的实现,并通过速度场将源分布转换为目标分布。文中提供了一维模型训练实例,展示了如何用神经网络学习速度场,以及使用最大均值差异(MMD)改进训练效果。与扩散模型相比,流匹配结构简单,资源需求低,适合多模态分布生成。
60 13
比扩散策略更高效的生成模型:流匹配的理论基础与Pytorch代码实现
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
本文介绍了一种基于扩散模型的文本到视频生成系统,详细展示了模型架构、训练流程及生成效果。通过3D U-Net结构和多头注意力机制,模型能够根据文本提示生成高质量视频。
52 1
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
92 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体

热门文章

最新文章