掩码语言模型(MLM)

简介: 【10月更文挑战第6天】掩码语言模型(MLM)

掩码语言模型(Masked Language Model,简称MLM)是一种在自然语言处理(NLP)领域中常用的预训练任务,特别是在基于Transformer架构的模型中。MLM的核心思想是让模型预测文本中被随机掩盖(masked)的单词,从而学习语言的深层次特征。以下是MLM的一些关键特点:

  1. 任务设计:在MLM任务中,模型的目标是预测文本序列中被特殊[MASK]标记替换的单词。这些单词是随机选择的,并且模型需要根据上下文来预测它们。

  2. 双向上下文理解:与传统的单向语言模型(如RNN或LSTM)不同,基于Transformer的MLM能够同时考虑单词的左侧和右侧上下文,实现双向理解。

  3. 预训练策略:MLM通常作为预训练阶段的一部分,模型在大量无标签文本上进行训练,学习语言的通用特征。

  4. 动态掩码:为了提高模型的鲁棒性,MLM训练中的掩码是动态生成的,即在每个训练周期中,模型面对的掩码模式都是随机变化的。

  5. 分词器的作用:在使用MLM时,模型通常配备有分词器(如BERT的WordPiece分词器),它能够处理未登录词(OOV,Out-Of-Vocabulary words)问题,将它们分解为更小的单元。

  6. 技术实现:在技术实现上,MLM涉及到在输入序列中以一定比例随机选择单词进行掩盖,然后模型需要预测这些单词。这要求模型能够理解单词周围的上下文,以准确预测缺失的词汇。

  7. 模型性能:MLM是BERT模型在多项NLP任务上取得显著性能提升的关键因素之一。它迫使模型学习到的表示能够捕捉到单词在不同上下文中的多种含义。

  8. 应用广泛:MLM不仅用于BERT模型,也被其他基于Transformer的模型采用,如RoBERTa、ALBERT等,证明了其作为一种有效的预训练策略的通用性。

  9. 挑战:尽管MLM在提升模型性能方面非常有效,但它也带来了一些挑战,如需要大量的计算资源来训练大型模型,以及需要大量的数据来充分训练模型参数。

  10. 与其他任务的结合:在某些模型中,MLM可能与其他预训练任务结合使用,如BERT中的下一个句子预测(Next Sentence Prediction,NSP)任务,以进一步提升模型对句子间关系的理解。

MLM作为一种创新的预训练方法,极大地推动了NLP领域的发展,特别是在提高模型对语言的深入理解方面发挥了重要作用。

相关文章
|
机器学习/深度学习 自然语言处理 TensorFlow
Next Sentence Prediction,NSP
Next Sentence Prediction(NSP) 是一种用于自然语言处理 (NLP) 的预测技术。
1049 2
|
数据采集 机器学习/深度学习 自然语言处理
Masked Language Modeling,MLM
Masked Language Modeling(MLM)是一种预训练语言模型的方法,通过在输入文本中随机掩盖一些单词或标记,并要求模型预测这些掩盖的单词或标记。MLM 的主要目的是训练模型来学习上下文信息,以便在预测掩盖的单词或标记时提高准确性。
1414 1
overleaf 插入图片,引用图片,图标标题Fig与文章引用Figure不一致解决
overleaf 插入图片,引用图片,图标标题Fig与文章引用Figure不一致解决
11396 1
|
NoSQL Linux 编译器
Linux下交叉编译gdb,gdbserver+gdb的使用以及通过gdb调试core文件
交叉编译gdb和gdbserver 1、下载gdb:下载地址为:http://ftp.gnu.org/gnu/gdb/按照一般的想法,最新版本越好,因此下载7.2这个版本。当然,凡事无绝对。我们以gdb-7.2.tar.bz2 这个文件为例。
8390 1
|
自然语言处理
掩码语言模型(MLM)
掩码语言模型(MLM)
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
13213 46
|
存储 JSON 自然语言处理
数据标注工具 doccano | 命名实体识别(Named Entity Recognition,简称NER)
标注数据保存在同一个文本文件中,每条样例占一行且存储为json格式,其包含以下字段 • id: 样本在数据集中的唯一标识ID。 • text: 原始文本数据。 • entities: 数据中包含的Span标签,每个Span标签包含四个字段: • id: Span在数据集中的唯一标识ID。 • start_offset: Span的起始token在文本中的下标。 • end_offset: Span的结束token在文本中下标的下一个位置。 • label: Span类型。 • relations: 数据中包含的Relation标签,每个Relation标签包含四个字段: • id: (Span
928 0
|
机器学习/深度学习 自然语言处理
掩码语言模型(MLM)
掩码语言模型(MLM)
376 2
|
自然语言处理 资源调度 并行计算
从本地部署到企业级服务:十种主流LLM推理框架的技术介绍与对比
本文深入探讨了十种主流的大语言模型(LLM)服务引擎和工具,涵盖从轻量级本地部署到高性能企业级解决方案,详细分析了它们的技术特点、优势及局限性,旨在为研究人员和工程团队提供适合不同应用场景的技术方案。内容涉及WebLLM、LM Studio、Ollama、vLLM、LightLLM、OpenLLM、HuggingFace TGI、GPT4ALL、llama.cpp及Triton Inference Server与TensorRT-LLM等。
1930 7