掩码语言模型(MLM)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 掩码语言模型(MLM)

掩码语言模型(Masked Language Model,简称MLM)是一种在自然语言处理(NLP)领域中常用的预训练任务,特别是在基于Transformer架构的模型中。MLM的核心思想是让模型预测文本中被随机掩盖(masked)的单词,从而学习语言的深层次特征。以下是MLM的一些关键特点:

  1. 任务设计:在MLM任务中,模型的目标是预测文本序列中被特殊[MASK]标记替换的单词。这些单词是随机选择的,并且模型需要根据上下文来预测它们。

  2. 双向上下文理解:与传统的单向语言模型(如RNN或LSTM)不同,基于Transformer的MLM能够同时考虑单词的左侧和右侧上下文,实现双向理解。

  3. 预训练策略:MLM通常作为预训练阶段的一部分,模型在大量无标签文本上进行训练,学习语言的通用特征。

  4. 动态掩码:为了提高模型的鲁棒性,MLM训练中的掩码是动态生成的,即在每个训练周期中,模型面对的掩码模式都是随机变化的。

  5. 分词器的作用:在使用MLM时,模型通常配备有分词器(如BERT的WordPiece分词器),它能够处理未登录词(OOV,Out-Of-Vocabulary words)问题,将它们分解为更小的单元。

  6. 技术实现:在技术实现上,MLM涉及到在输入序列中以一定比例随机选择单词进行掩盖,然后模型需要预测这些单词。这要求模型能够理解单词周围的上下文,以准确预测缺失的词汇。

  7. 模型性能:MLM是BERT模型在多项NLP任务上取得显著性能提升的关键因素之一。它迫使模型学习到的表示能够捕捉到单词在不同上下文中的多种含义。

  8. 应用广泛:MLM不仅用于BERT模型,也被其他基于Transformer的模型采用,如RoBERTa、ALBERT等,证明了其作为一种有效的预训练策略的通用性。

  9. 挑战:尽管MLM在提升模型性能方面非常有效,但它也带来了一些挑战,如需要大量的计算资源来训练大型模型,以及需要大量的数据来充分训练模型参数。

  10. 与其他任务的结合:在某些模型中,MLM可能与其他预训练任务结合使用,如BERT中的下一个句子预测(Next Sentence Prediction,NSP)任务,以进一步提升模型对句子间关系的理解。

MLM作为一种创新的预训练方法,极大地推动了NLP领域的发展,特别是在提高模型对语言的深入理解方面发挥了重要作用。

相关文章
|
芯片 SoC
FinFET工作原理、结构和应用特性介绍
FinFET的全称是Fin Field-Effect Transistor。它是一种新型互补金属氧化物半导体晶体管。FinFET 的名称是基于晶体管和鳍片形状的相似性。
14698 0
FinFET工作原理、结构和应用特性介绍
|
移动开发 前端开发 JavaScript
【网页设计】基于HTML的我的家乡-零陵网页设计
【网页设计】基于HTML的我的家乡-零陵网页设计
412 0
|
8月前
|
人工智能 IDE 测试技术
魔搭×通义灵码:0代码基础、0门槛在线编程做应用
本节课主要介绍了如何利用 Notebook IDE 环境和通义灵码工具来具体开发 AI 产品,通过前面的介绍,可以感受到好的开发环境和开发工具往往可以让开发过程事半功倍,也可以更快更好地解决一些实际问题。随着 AI 代码生成工具不断成熟,动动手指,你的 AI 产品马上变成现实~
|
11月前
|
存储 人工智能 开发框架
Kheish:开源的多智能体开发框架,通过 YAML 配置工作流和多个 Agent 共同协作解决复杂任务
Kheish 是一个开源的多智能体协调平台,基于大型语言模型(LLM)设计,能够通过灵活配置多个智能体来解决复杂任务。平台支持模块化集成、聊天式提示、反馈循环等功能,适用于代码审计、法律文件分析、客户服务自动化等多种应用场景。
354 18
Kheish:开源的多智能体开发框架,通过 YAML 配置工作流和多个 Agent 共同协作解决复杂任务
|
10月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
917 20
|
存储 API 流计算
Flink DataStream API-概念、模式、作业流程和程序
前几篇介绍了Flink的入门、架构原理、安装等,相信你对Flink已经了解入门。接下来开始介绍Flink DataStream API内容,先介绍DataStream API基本概念和使用,然后介绍核心概念,最后再介绍经典案例和代码实现。本篇内容:Flink DataStream API的概念、模式、作业流程和程序。
Flink DataStream API-概念、模式、作业流程和程序
|
算法 C++ 容器
C++初阶之一篇文章教会你queue和priority_queue(理解使用和模拟实现)(下)
优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器
|
人工智能 自然语言处理 JavaScript
阿里云发布 AI 编程助手 “通义灵码”——VSCode更强了 !!
阿里云发布 AI 编程助手 “通义灵码”——VSCode更强了 !!
1502 3
|
Java
如何从外网通过HTTP和HTTPS访问本机localhost WEB服务器
HTTP和HTTPS访问本机localhost WEB服务器 内网主机上安装了WEB服务器,只能在局域网内或者本机上访问,怎样从公网也能访问本地WEB服务器? 本文将介绍使用holer实现的具体步骤。
3210 0
|
IDE 开发工具 Android开发
推荐两个高逼格Pycharm主题Material Theme UI、One Dark theme
推荐两个高逼格Pycharm主题Material Theme UI、One Dark theme
5594 0