掩码语言模型(MLM)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 掩码语言模型(MLM)

掩码语言模型(Masked Language Model,简称MLM)是自然语言处理(NLP)中的一种预训练任务,特别是在BERT(Bidirectional Encoder Representations from Transformers)这类模型中得到了广泛的应用。以下是MLM的关键特点和作用:

  1. 任务定义:在MLM任务中,模型需要预测输入句子中被随机掩盖(mask)的单词。具体来说,在给定的句子中,某些单词会被特殊的[MASK]标记替换,模型的目标是预测这些被掩盖的单词。

  2. 双向上下文理解:MLM使得模型能够同时学习利用单词的左侧和右侧上下文信息,这与传统的单向语言模型(如GPT)不同,后者只能看到句子的一部分上下文。

  3. 预训练目标:MLM是BERT等模型预训练阶段的主要目标之一。通过这种方式,模型学习到的语言表示能够捕捉到丰富的语义和句法信息。

  4. 动态掩码:为了提高模型的鲁棒性,MLM训练中的掩码是动态生成的,即在每个训练周期(epoch)中,模型面对的掩码模式都是随机变化的。

  5. 分词器的作用:在使用MLM时,模型通常配备有分词器(如BERT的WordPiece分词器),它能够处理未登录词(OOV,Out-Of-Vocabulary words)问题,将它们分解为更小的单元。

  6. 技术实现:在技术实现上,MLM通常涉及到在输入序列中以一定比例随机选择单词进行掩盖,然后模型需要预测这些单词。这要求模型能够理解单词周围的上下文,以准确预测缺失的词汇。

  7. 模型性能:MLM是BERT模型在多项NLP任务上取得显著性能提升的关键因素之一。它迫使模型学习到的表示能够捕捉到单词在不同上下文中的多种含义。

  8. 应用广泛:MLM不仅用于BERT模型,也被其他基于Transformer的模型采用,如RoBERTa、ALBERT等,证明了其作为一种有效的预训练策略的通用性。

  9. 挑战:尽管MLM在提升模型性能方面非常有效,但它也带来了一些挑战,如需要大量的计算资源来训练大型模型,以及需要大量的数据来充分训练模型参数。

  10. 与其他任务的结合:在某些模型中,MLM可能与其他预训练任务结合使用,如BERT中的下一个句子预测(Next Sentence Prediction,NSP)任务,以进一步提升模型对句子间关系的理解。

MLM作为一种创新的预训练方法,极大地推动了NLP领域的发展,特别是在提高模型对语言的深入理解方面发挥了重要作用。

相关文章
|
8月前
|
自然语言处理
论文介绍:语言模型如何解释语言模型中的神经元
【2月更文挑战第22天】论文介绍:语言模型如何解释语言模型中的神经元
47 2
论文介绍:语言模型如何解释语言模型中的神经元
|
8月前
|
机器学习/深度学习 自然语言处理 算法
预训练语言模型是什么?
【2月更文挑战第13天】预训练语言模型是什么?
82 2
预训练语言模型是什么?
|
机器学习/深度学习 自然语言处理 算法
大型语言模型:SBERT — 句子BERT
大型语言模型:SBERT — 句子BERT
214 0
|
2月前
|
机器学习/深度学习 自然语言处理
掩码语言模型(MLM)
掩码语言模型(MLM)
|
6月前
|
机器学习/深度学习 自然语言处理 语音技术
大语言模型系列-Transformer
大语言模型系列-Transformer
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
175 1
|
5月前
|
数据采集 机器学习/深度学习 自然语言处理
VLE基于预训练文本
8月更文挑战第21天
|
6月前
|
机器学习/深度学习 自然语言处理 PyTorch
大语言模型系列-Transformer(二)
大语言模型系列-Transformer(二)
|
6月前
|
机器学习/深度学习 数据采集 自然语言处理
大语言模型系列:Transformer
大语言模型系列:Transformer
211 0
|
8月前
|
机器学习/深度学习 自然语言处理 数据挖掘
预训练语言模型中Transfomer模型、自监督学习、BERT模型概述(图文解释)
预训练语言模型中Transfomer模型、自监督学习、BERT模型概述(图文解释)
220 0