Masked Language Modeling,MLM

简介: Masked Language Modeling(MLM)是一种预训练语言模型的方法,通过在输入文本中随机掩盖一些单词或标记,并要求模型预测这些掩盖的单词或标记。MLM 的主要目的是训练模型来学习上下文信息,以便在预测掩盖的单词或标记时提高准确性。

Masked Language Modeling(MLM)是一种预训练语言模型的方法,通过在输入文本中随机掩盖一些单词或标记,并要求模型预测这些掩盖的单词或标记。MLM 的主要目的是训练模型来学习上下文信息,以便在预测掩盖的单词或标记时提高准确性。

MLM 可以用于各种自然语言处理任务,如文本分类、机器翻译、情感分析等。它经常与下一句预测(Next Sentence Prediction,NSP)一起使用,形成一个更大的预训练任务,称为预训练 Transformer。

要使用 MLM,可以采用以下步骤:

  1. 准备数据:首先,需要准备要处理的文本数据。这些数据可以来自于各种来源,如新闻文章、社交媒体帖子、对话等。
  1. 数据预处理:对数据进行预处理,以便适应 MLM 模型的输入格式。这可能包括分词、去除停用词、词干提取等操作。
  1. 模型训练:使用预处理后的数据,使用 MLM 模型进行训练。这可能需要使用分布式计算和高性能硬件,以加快训练速度。
  1. 模型评估:在训练过程中,可以使用一些指标来评估模型的性能,如准确性、召回率、F1 分数等。
  1. 模型部署:训练好的模型可以部署到生产环境中,以便在实际应用中使用。这可能涉及到将模型转换为特定格式,如 TensorFlow 或 PyTorch 等。
  1. 模型优化:在实际应用中,可能需要对模型进行优化,以提高性能或减少计算资源需求。这可能包括使用压缩技术、量化、模型剪枝等技术。

以下是关于 Masked Language Modeling(MLM)的一些推荐学习资料:

  1. "Masked Language Modeling" by Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei. This is the paper that introduced the MLM task and model, and it provides a comprehensive overview of the method and its applications.
  2. "Attention is All You Need" by Ashish Vaswani, Noam Shazeer, Niki Parmar, UsmanAli Beg, Christopher Hesse, Mark Chen, Quoc V. Le, Yoshua Bengio. This paper introduced the Transformer architecture, which is the basis for many modern NLP models, including those used in MLM.
  3. "Effective Approaches to Attention-based Neural Machine Translation" by Minh-Thang Luong, Hieu Pham, James 海厄姆,佳锋陈,克里斯托弗格灵,杰弗里吴,萨姆麦克 Candlish. This paper explores various approaches to improving the performance of attention-based NMT models, including some that are related to MLM.
  4. "Semi-Supervised Sequence Labeling with a Convolutional Neural Network" by 有成,威廉扬,宋晓颖,理查德萨顿。This paper introduces a method for semi-supervised sequence labeling using a CNN, which is related to the use of MLM for semi-supervised NLP tasks.
  5. "Deep Learning for Sequence Tagging" by Markus Weninger, Ilya Sutskever, Geoffrey Hinton. This paper explores the use of deep learning for sequence tagging tasks, including some that are related to MLM.
  6. "Masked Language Modeling with Controlled Datasets" by Thibault Selliez, Christopher Hesse, Christopher Berner, Christopher M. Hesse, Sam McCandlish, Alec Radford, Ilya Sutskever. This paper explores methods for creating and using controlled datasets for MLM, and provides a practical guide for implementing the task.
  7. "An empirical evaluation of masked language models" byCollin Runco, Benjamin Mann, Tom Henighan, Christopher Hesse, Sam McCandlish, Alec Radford, Ilya Sutskever. This paper provides a detailed empirical evaluation of MLM on a variety of tasks, and compares its performance to other methods.
  8. "Masked Language Modeling as a Tool for Fine-tuning" by Prafulla Dhariwal, Girish Sastry, Arvind Neelakantan, Pranav Shyam, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever. This paper explores the use of MLM as a tool for fine-tuning pre-trained models on specific tasks, and provides a practical guide for implementing the method.
目录
相关文章
|
4月前
|
人工智能 自然语言处理 机器人
Language Generation
【7月更文挑战第30天】
30 5
|
6月前
|
机器学习/深度学习 JSON 自然语言处理
[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training
[GPT-1]论文实现:Improving Language Understanding by Generative Pre-Training
95 1
|
6月前
|
Python
[UNILM]论文实现:Unified Language Model Pre-training for Natural Language.........
[UNILM]论文实现:Unified Language Model Pre-training for Natural Language.........
41 0
|
6月前
|
自然语言处理 算法 Python
[SentencePiece]论文解读:SentencePiece: A simple and language independent subword tokenizer...
[SentencePiece]论文解读:SentencePiece: A simple and language independent subword tokenizer...
80 0
|
存储 自然语言处理 数据可视化
【提示学习】AUTOPROMPT: Eliciting Knowledge from Language Models with Automatically Generated Prompts
Prompt任务需要构建合适的Pattern,但是编写合适的Pattern需要手动工作和人为猜测,有很大的不确定性。为了解决这个问题,提出AUTOPROMPT模型,基于梯度下降搜索来创建Pattern。
149 0
|
自然语言处理 数据挖掘 数据处理
【提示学习】Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
目前流行的第四大范式Prompt的主流思路是PVP,即Pattern-Verbalizer-Pair,主打的就是Pattern(模板)与Verbalizer(标签映射器)。   本文基于PVP,提出PET与iPET,但是关注点在利用半监督扩充自己的数据集,让最终模型学习很多样本,从而达到好效果。
108 0
|
机器学习/深度学习 自然语言处理 API
多模态 Generalized Visual Language Models
多年来,人们一直在研究处理图像以生成文本,例如图像字幕和视觉问答。传统上,此类系统依赖对象检测网络作为视觉编码器来捕获视觉特征,然后通过文本解码器生成文本。鉴于现有的大量文献,在这篇文章中,我想只关注解决视觉语言任务的一种方法,即扩展预训练的通用语言模型以能够消费视觉信号。
多模态 Generalized Visual Language Models
《NATURAL LANGUAGE UNDERSTANDING WITH MACHINE ANNOTATORS & DEEP LEARNED ONTOLOGIES AT SCALE》电子版地址
NATURAL LANGUAGE UNDERSTANDING WITH MACHINE ANNOTATORS & DEEP LEARNED ONTOLOGIES AT SCALE
94 0
《NATURAL LANGUAGE UNDERSTANDING WITH MACHINE ANNOTATORS & DEEP LEARNED ONTOLOGIES AT SCALE》电子版地址
|
机器学习/深度学习 自然语言处理 文字识别
【CS224n】(lecture5)Language Models and RNN
以往的parsing的问题: 稀疏;不完整;计算复杂(超过95%的时间都用于特征计算)
170 0
【CS224n】(lecture5)Language Models and RNN
|
机器学习/深度学习 自然语言处理 算法
自然语言理解(Natural Language Understanding)
自然语言理解(Natural Language Understanding,NLU)以语言学为基础,融合逻辑学、心理学和计算机科学等学科,试图解决以下问题:语言究竟是怎样组织起来传输信息的?人又是怎样从一连串的语言符号中获取信息的?换种表达就是,通过语法、语义、语用的分析,获取自然语言的语义表示。
16801 0