DataFrame

简介: 【10月更文挑战第15天】

Pandas 是 Python 中用于数据分析和操作的一个强大库,它提供了多种函数来读取不同格式的数据文件,并将这些数据转换为 DataFrame 对象,DataFrame 是 Pandas 中用于存储和操作结构化数据的主要数据结构。

以下是 Pandas 提供的一些常用数据读取函数的详细说明和使用示例:

1. pd.read_csv(filename)

这个函数用于读取 CSV(逗号分隔值)文件,并将其转换为 DataFrame。

是什么:读取 CSV 文件。
怎么用:你需要提供 CSV 文件的路径或 URL。
代码示例

import pandas as pd

# 读取本地 CSV 文件
df_csv = pd.read_csv('path/to/your/file.csv')

# 读取网上的 CSV 文件
df_csv = pd.read_csv('https://example.com/data.csv')

print(df_csv)
AI 代码解读

2. pd.read_excel(filename)

这个函数用于读取 Excel 文件,并将其转换为 DataFrame。

是什么:读取 Excel 文件。
怎么用:你需要提供 Excel 文件的路径。
代码示例

# 读取 Excel 文件
df_excel = pd.read_excel('path/to/your/file.xlsx')

print(df_excel)
AI 代码解读

3. pd.read_sql(query, connection_object)

这个函数用于从 SQL 数据库中读取数据,并将其转换为 DataFrame。

是什么:从 SQL 数据库读取数据。
怎么用:你需要提供 SQL 查询语句和数据库连接对象。
代码示例

import sqlite3
import pandas as pd

# 创建数据库连接
conn = sqlite3.connect('path/to/your/database.db')

# SQL 查询语句
query = 'SELECT * FROM your_table'

# 从 SQL 数据库读取数据
df_sql = pd.read_sql(query, conn)

# 关闭数据库连接
conn.close()

print(df_sql)
AI 代码解读

4. pd.read_json(json_string)

这个函数用于从 JSON 字符串中读取数据,并将其转换为 DataFrame。

是什么:从 JSON 字符串读取数据。
怎么用:你需要提供 JSON 格式的字符串。
代码示例

# JSON 字符串
json_str = '[{"name": "John", "age": 30}, {"name": "Anna", "age": 28}]'

# 从 JSON 字符串读取数据
df_json = pd.read_json(json_str)

print(df_json)
AI 代码解读

5. pd.read_html(url)

这个函数用于从 HTML 页面中读取表格数据,并将其转换为 DataFrame。

是什么:从 HTML 页面读取表格数据。
怎么用:你需要提供包含表格数据的 HTML 页面的 URL。
代码示例

# 从 HTML 页面读取表格数据
df_html = pd.read_html('https://example.com/data.html')

# 如果页面中有多个表格,返回的将是一个 DataFrame 的列表
# 选择第一个 DataFrame
df_html = df_html[0]

print(df_html)
AI 代码解读
目录
相关文章
DataFrame
【10月更文挑战第13天】
331 2
DataFrame.corr
【10月更文挑战第15天】
87 4
Dataframe
Dataframe
253 2
Pandas学习笔记之Dataframe
Pandas学习笔记之Dataframe
|
11月前
|
dataframe学习知识总结
pandas DataFrame是Python中用于处理二维表格数据的重要数据结构,支持多种类型数据,提供丰富功能。可通过字典、列表或文件创建DataFrame,使用`.info()`、`.describe()`、`.head()`和`.tail()`查看数据信息。选择和过滤数据可按列名、行索引或条件进行。修改包括更新元素、列及添加/删除列。利用`.groupby()`和聚合函数进行分组分析,使用`.sort_values()`和`.rank()`排序,通过`.concat()`和`.merge()`合并数据。
139 3
为什么你需要Pandas的DataFrame
为什么你需要Pandas的DataFrame
145 0
Pandas的介绍及 Series、 DataFrame的创建
Pandas 是一个强大的分析结构化数据的工具集;它的使用基础是 Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。Pandas 的主要数据结构是 Series(一维数据)和 DataFrame(二维数据)。
209 0

相关课程

更多