【阿里云云原生专栏】云原生下的数据湖建设:阿里云MaxCompute与DataWorks解决方案

简介: 【5月更文挑战第26天】在数字化时代,数据成为企业创新的关键。阿里云MaxCompute和DataWorks提供了一种构建高效、可扩展数据湖的解决方案。数据湖允许存储和分析大量多格式数据,具备高灵活性和扩展性。MaxCompute是PB级数据仓库服务,擅长结构化数据处理;DataWorks则是一站式大数据协同平台,支持数据集成、ETL和治理。通过DataWorks收集数据,MaxCompute存储和处理,企业可以实现高效的数据分析和挖掘,从而提升业务洞察和竞争力。

在数字化时代背景下,数据已成为企业创新和竞争力提升的关键资源。随着云计算技术的成熟和云原生架构的普及,越来越多的企业开始探索如何高效、灵活地管理和分析海量数据。数据湖作为一种支持原始数据存储和分析的架构,正逐渐成为企业数据资产管理的优选方案。本文将探讨如何在云原生环境下利用阿里云MaxCompute和DataWorks构建高效、可扩展的数据湖解决方案。

1. 数据湖的概念及优势

数据湖是一个用于存储、处理和分析大量多格式数据的平台,它支持数据的原始格式存储,无需事先进行结构化处理。与传统的数据仓库相比,数据湖具备更高的灵活性和扩展性,能够支撑大数据分析和机器学习等多样化的数据处理需求。

2. 阿里云MaxCompute与DataWorks简介

MaxCompute 是阿里云提供的一种快速、完全托管的PB级数据仓库服务,它具有强大的数据计算和分析能力。MaxCompute适合处理结构化数据,并提供了SQL-like的查询语言,使得数据分析变得简单高效。

DataWorks 则是阿里云提供的一站式大数据协同工作平台,它整合了数据集成、ETL(Extract, Transform, Load)开发、数据治理、数据API服务等功能。DataWorks支持多种数据源的接入,并能轻松完成数据的转换和准备工作,为MaxCompute提供数据输入。

3. 构建数据湖的实践方案

a. 数据采集与存储

首先,需要通过DataWorks的数据集成功能,将散落在不同数据源的数据汇集到一起。这可能包括数据库、日志文件、社交媒体数据等。DataWorks支持丰富的数据连接器,可以高效地完成数据采集任务。

采集到的数据直接写入MaxCompute的表中存储。MaxCompute支持高效的数据写入和查询,能够应对大规模数据的挑战。此外,MaxCompute的按量计费模式也大大降低了数据存储的成本。

b. 数据加工与处理

存储在MaxCompute中的数据可能需要进一步的ETL处理,以适应具体的业务分析需求。使用DataWorks的ETL开发功能,用户可以可视化地设计数据处理流程,包括数据清洗、转换和汇总等操作。这些处理后的数据将更加规范化,便于上层的数据分析和应用。

c. 数据分析与挖掘

准备好的数据可以直接在MaxCompute上进行各种分析和挖掘。MaxCompute提供了兼容SQL的查询语言,使得用户可以使用熟悉的SQL语法进行数据分析。同时,MaxCompute还支持MapReduce程序,为复杂的数据分析算法提供了实现的可能。

为了更直观地展示这一流程,假设我们有一个简单的数据分析任务:统计网站日志中的页面访问量(PV)。

首先,在DataWorks中配置一个数据同步任务,定时从网站日志服务器同步日志数据到MaxCompute。然后,在DataWorks中设计一个ETL流程,用于解析日志文件并提取有用的信息,如时间戳、URL等。这些处理后的数据保存在一个新的MaxCompute表中。

接下来,使用MaxCompute的SQL功能执行分析查询,如:

SELECT TO_DATE(timestamp), URL, COUNT(*) as PV
FROM log_data
GROUP BY TO_DATE(timestamp), URL;

这条SQL语句将按照日期和URL分组统计页面访问量。

4. 结论

通过阿里云MaxCompute与DataWorks的结合,企业可以方便地构建出一个功能强大、易于管理的数据湖解决方案。这不仅有助于提升企业的数据处理能力,还能够为企业带来更深入的业务洞察和决策支持。在云原生的大潮中,掌握这种高效的数据管理与分析方法,将为企业在激烈的市场竞争中保持领先地位提供重要支撑。

相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
相关文章
|
4月前
|
存储 运维 分布式计算
零售数据湖的进化之路:滔搏从Lambda架构到阿里云Flink+Paimon统一架构的实战实践
在数字化浪潮席卷全球的今天,传统零售企业面临着前所未有的技术挑战和转型压力。本文整理自 Flink Forward Asia 2025 城市巡回上海站,滔搏技术负责人分享了滔搏从传统 Lambda 架构向阿里云实时计算 Flink 版+Paimon 统一架构转型的完整实战历程。这不仅是一次技术架构的重大升级,更是中国零售企业拥抱实时数据湖仓一体化的典型案例。
299 0
|
6月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
|
10月前
|
存储 分布式计算 OLAP
百观科技基于阿里云 EMR 的数据湖实践分享
百观科技为应对海量复杂数据处理的算力与成本挑战,基于阿里云 EMR 构建数据湖。EMR 依托高可用的 OSS 存储、开箱即用的 Hadoop/Spark/Iceberg 等开源技术生态及弹性调度,实现数据接入、清洗、聚合与分析全流程。通过 DLF 与 Iceberg 的优化、阶梯式弹性调度(资源利用率提升至70%)及倚天 ARM 机型搭配 EMR Trino 方案,兼顾性能与成本,支撑数据分析需求,降低算力成本。
660 59
|
8月前
|
存储 分布式计算 DataWorks
从MaxCompute到Milvus:通过DataWorks进行数据同步,实现海量数据高效相似性检索
如果您需要将存储在MaxCompute中的大规模结构化数据导入Milvus,以支持高效的向量检索和相似性分析,可以通过DataWorks的数据集成服务实现无缝同步。本文介绍如何利用DataWorks,快速完成从MaxCompute到Milvus的离线数据同步。
|
12月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
人工智能 Cloud Native 大数据
DataWorks深度技术解读:构建开放的云原生数据开发平台
Dateworks是一款阿里云推出的云原生数据处理产品,旨在解决数据治理和数仓管理中的挑战。它强调数据的准确性与一致性,确保商业决策的有效性。然而,严格的治理模式限制了开发者的灵活性,尤其是在面对多模态数据和AI应用时。为应对这些挑战,Dateworks进行了重大革新,包括云原生化、开放性增强及面向开发者的改进。通过Kubernetes作为资源底座,Dateworks实现了更灵活的任务调度和容器化支持,连接更多云产品,并提供开源Flowspec和Open API,提升用户体验。
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
存储 分布式计算 算法
恭喜小红书!业界最大数据湖0故障迁上阿里云
恭喜小红书!业界最大数据湖0故障迁上阿里云
1018 1
|
SQL DataWorks 关系型数据库
阿里云 DataWorks 正式支持 SelectDB & Apache Doris 数据源,实现 MySQL 整库实时同步
阿里云数据库 SelectDB 版是阿里云与飞轮科技联合基于 Apache Doris 内核打造的现代化数据仓库,支持大规模实时数据上的极速查询分析。通过实时、统一、弹性、开放的核心能力,能够为企业提供高性价比、简单易用、安全稳定、低成本的实时大数据分析支持。SelectDB 具备世界领先的实时分析能力,能够实现秒级的数据实时导入与同步,在宽表、复杂多表关联、高并发点查等不同场景下,提供超越一众国际知名的同类产品的优秀性能,多次登顶 ClickBench 全球数据库分析性能排行榜。
704 6
|
存储 分布式计算 DataWorks
关于阿里云DataWorks的6个问题记录
该文章记录了关于阿里云DataWorks使用的六个常见问题及解答,帮助用户更好地理解和操作DataWorks平台。
481 0
关于阿里云DataWorks的6个问题记录

热门文章

最新文章