做AI运动小程序有哪些解决方案,如何进行选型?

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
简介: 随着深度学习技术的发展,AI运动应用如“天天跳绳”和“百分运动”变得流行。本文探讨了将AI运动功能引入微信小程序的可行性,并介绍了几种解决方案。实现AI运动计数的关键技术包括视频抽帧、人体检测、姿态识别等。文中详细描述了离线方案(全离线和半离线)和原生方案(自研AI引擎和成熟插件)的不同实现方式,并对各种方案进行了对比,建议优先选择成本低、体验佳的AI运动识别插件方案。

引言:随着深度学习技术的发展进步,已经不再依赖强大的GPU算力,便可实现AI推理了,让AI技术渗透到了电脑、手机、智能设备等各类设备。体育、健身行业也不例外,大厂,推出的天天跳绳、百分运动等AI运动APP,让云上运动会、线上运动会、健身打卡、AI体育指导、AI体测等概念空前火热。
那么AI运动这个应用场景,除了在原生APP上实现,能否搬上微信小程序呢,今天就带您探索几种可能的解决方案,并进行一些横向对比。

一、AI运动识别技术要点

要实现AI运动计时、计数,要解决主要技术问题有:视频抽帧、视频人体检测、姿态识别、计时计数算法,其中最主要的也是技术前提的便是人体识别检测,实现上面的技术,便是一个完整的AI运动解决方案了。
image.png

二、离线方案

所谓离线方案,即把整套的视频抽帧、视频人体检测、计时计数等环节放在后台服务端执行,由于在后台端执行,所以无法做到在小程序端根据视频或摄像头采集进度实时展示识别结果及进行互动,故叫离线方案。

1.1、全离线方案

全离线方案主要的技术方案在后端实现,运行在后台服务器,小程序端只负责上传运动视频或图片,等待服端返回识别结果即可。 后端实现的相关技术栈相对比较成熟,如视频抽帧可以选择采用ffmpeg、opencv等成熟开源组件实现;人体检测识别可以采用百度、阿里、腾讯等成熟的第三方服务或私有化部署相关模型。

1.2、半离线方案

所谓半离线方案,与全离线方案的区别在于,将视频抽帧放在小程序端执行,即可利用小程序的camera组件实时采集运动画面,调用相应的API进行实时抽帧向后台回传,后台反馈识别结果。

二、原生方案

所谓原生方案,也可叫本地原生方案,所有技术环节使用javascript在小程序端本地实现及运行,由于所有的计算在小程序端同步进行,所以实时体验会更好,后端压力也较轻,离线方案的后端压力会随着用户量增长上升。

1.1、自研AI引擎方案

微信小程序端本身提供了Camera组件及摄像头画面抽帧API,使用现成的即可,重点在于人体关键点识别检测的深度学习推理引擎的集成,这需要根据小程序的运行时,选择好相应的识别引擎及检测模型,进行适配集成。再编写人体姿态识别算法及运动分析器逻辑。

1.2、成熟的插件方案

相较于自研方案,也可以选择成熟的小程序插件解决方案,比如我们推出的【AI运动识别】微信小程序插件,可以为您的小程序提供人体检测、运动识别的AI能力,插件目前支持跳绳、开合跳、俯卧撑、仰卧起坐、卷腹、深蹲(深蹲起)、平板支撑、马步蹲等运动的识别检测计时、计数分析,更多的运动类型正在丰富中;插件运动识别引擎提供了基于规则配置的运动识别能力,您可以通过配置一些简单的规则,增加一项新的运动(动作)识别能力,若是复杂的运动种类,也可以通过代码扩展的方式进行。
image.png

三、方案对比

方案 难度 成本 体验 优缺点
全离线方案 实现简单,后台服务器、三方API调用成本高
半离线方案 实现简单,后台服务器、带宽要求高、三方API调用等成本高
自研原生方案 实现难度比较高,上线稳定周期较长
AI运动识别插件原生方案 实现简单,成本低,且成熟稳定、开箱即用

根据上面的综合对比得知,离线方案投入的成本和体验不成正比,所以在新开发应用中不应将离线方案纳入考虑范围;无特殊的需求团队建议直接使用AI运动识别插件方案,投入成本小且能避免很多实现陷井。

相关文章
|
1月前
|
人工智能 监控 安全
员工使用第三方AI办公的风险与解决方案:从三星案例看AI的数据防泄漏
生成式AI提升办公效率,也带来数据泄露风险。三星、迪士尼案例揭示敏感信息外泄隐患。AI-FOCUS团队建议构建“流式网关+DLP”防护体系,实现分级管控、全程审计,平衡安全与创新。
|
1月前
|
人工智能 小程序 前端开发
一个小程序轻量AR体感游戏,开发实现解决方案
针对青少年运动兴趣不足问题,AR体感游戏凭借沉浸式互动体验脱颖而出。结合小程序“AI运动识别”插件与WebGL渲染技术,可实现无需外设的轻量化AR健身游戏,如跳糕、切水果等,兼具趣味性与锻炼效果,适用于儿童健身及职工团建,即开即玩,低门槛高参与。
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1361 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
1月前
|
人工智能 小程序 Java
电子班牌管理系统源代码,基于AI人脸识别技术的智能电子班牌云平台解决方案
电子班牌管理系统源码,基于AI人脸识别的智慧校园云平台,支持SaaS架构,涵盖管理端、小程序与安卓班牌端。集成考勤、课表、通知、门禁等功能,提供多模式展示与教务联动,助力校园智能化管理。
150 0
|
3月前
|
人工智能 安全 数据中心
|
4月前
|
人工智能 自然语言处理 运维
阿里云 X 瓴羊:AI Stack一体机上新解决方案,重构企业问数与客服交互
简介:瓴羊基于阿里云AI Stack推出智能问数与智能客服一体机,以“低成本、零门槛”实现数据分析与客服效率的显著提升,助力企业智能化升级。
499 0
|
2月前
|
人工智能 机器人 Serverless
安诺机器人 X 阿里云函数计算 AI 咖啡印花解决方案
当云计算遇见具身智能,AI咖啡开启零售新体验。用户通过手机生成个性化图像,云端AI快速渲染,机器人精准复刻于咖啡奶泡之上,90秒内完成一杯可饮用的艺术品。该方案融合阿里云FunctionAI生图能力与安诺机器人高精度执行系统,实现AIGC创意到实体呈现的闭环,为线下零售提供低成本、高互动、易部署的智能化升级路径,已在商场、机场、展馆等场景落地应用。
安诺机器人 X 阿里云函数计算 AI 咖啡印花解决方案
|
1月前
|
人工智能 小程序 搜索推荐
【一步步开发AI运动APP】十二、自定义扩展新运动项目2
本文介绍如何基于uni-app运动识别插件实现“双手并举”自定义扩展运动,涵盖动作拆解、姿态检测规则构建及运动分析器代码实现,助力开发者打造个性化AI运动APP。
|
2月前
|
机器学习/深度学习 人工智能 边缘计算
AI 奶茶店吸管监测识别解决方案技术开发说明
本方案针对奶茶店打包环节中吸管与奶茶数量不匹配问题,采用AI视觉识别技术,实现自动化精准监测。
119 0
|
3月前
|
传感器 人工智能 自然语言处理
当AI学会跑跳抓:来云栖大会,参加一场“具身智能运动会”
一副AI眼镜帮你实时智能识别、一只机器狗陪你跑跨栏、一条机械臂听你指挥、一场与机器人的点球大战——这可不是科幻电影,这是2025云栖大会即将上演的现实。
219 8

热门文章

最新文章

下一篇
oss云网关配置