做AI运动小程序有哪些解决方案,如何进行选型?

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 随着深度学习技术的发展,AI运动应用如“天天跳绳”和“百分运动”变得流行。本文探讨了将AI运动功能引入微信小程序的可行性,并介绍了几种解决方案。实现AI运动计数的关键技术包括视频抽帧、人体检测、姿态识别等。文中详细描述了离线方案(全离线和半离线)和原生方案(自研AI引擎和成熟插件)的不同实现方式,并对各种方案进行了对比,建议优先选择成本低、体验佳的AI运动识别插件方案。

引言:随着深度学习技术的发展进步,已经不再依赖强大的GPU算力,便可实现AI推理了,让AI技术渗透到了电脑、手机、智能设备等各类设备。体育、健身行业也不例外,大厂,推出的天天跳绳、百分运动等AI运动APP,让云上运动会、线上运动会、健身打卡、AI体育指导、AI体测等概念空前火热。
那么AI运动这个应用场景,除了在原生APP上实现,能否搬上微信小程序呢,今天就带您探索几种可能的解决方案,并进行一些横向对比。

一、AI运动识别技术要点

要实现AI运动计时、计数,要解决主要技术问题有:视频抽帧、视频人体检测、姿态识别、计时计数算法,其中最主要的也是技术前提的便是人体识别检测,实现上面的技术,便是一个完整的AI运动解决方案了。
image.png

二、离线方案

所谓离线方案,即把整套的视频抽帧、视频人体检测、计时计数等环节放在后台服务端执行,由于在后台端执行,所以无法做到在小程序端根据视频或摄像头采集进度实时展示识别结果及进行互动,故叫离线方案。

1.1、全离线方案

全离线方案主要的技术方案在后端实现,运行在后台服务器,小程序端只负责上传运动视频或图片,等待服端返回识别结果即可。 后端实现的相关技术栈相对比较成熟,如视频抽帧可以选择采用ffmpeg、opencv等成熟开源组件实现;人体检测识别可以采用百度、阿里、腾讯等成熟的第三方服务或私有化部署相关模型。

1.2、半离线方案

所谓半离线方案,与全离线方案的区别在于,将视频抽帧放在小程序端执行,即可利用小程序的camera组件实时采集运动画面,调用相应的API进行实时抽帧向后台回传,后台反馈识别结果。

二、原生方案

所谓原生方案,也可叫本地原生方案,所有技术环节使用javascript在小程序端本地实现及运行,由于所有的计算在小程序端同步进行,所以实时体验会更好,后端压力也较轻,离线方案的后端压力会随着用户量增长上升。

1.1、自研AI引擎方案

微信小程序端本身提供了Camera组件及摄像头画面抽帧API,使用现成的即可,重点在于人体关键点识别检测的深度学习推理引擎的集成,这需要根据小程序的运行时,选择好相应的识别引擎及检测模型,进行适配集成。再编写人体姿态识别算法及运动分析器逻辑。

1.2、成熟的插件方案

相较于自研方案,也可以选择成熟的小程序插件解决方案,比如我们推出的【AI运动识别】微信小程序插件,可以为您的小程序提供人体检测、运动识别的AI能力,插件目前支持跳绳、开合跳、俯卧撑、仰卧起坐、卷腹、深蹲(深蹲起)、平板支撑、马步蹲等运动的识别检测计时、计数分析,更多的运动类型正在丰富中;插件运动识别引擎提供了基于规则配置的运动识别能力,您可以通过配置一些简单的规则,增加一项新的运动(动作)识别能力,若是复杂的运动种类,也可以通过代码扩展的方式进行。
image.png

三、方案对比

方案 难度 成本 体验 优缺点
全离线方案 实现简单,后台服务器、三方API调用成本高
半离线方案 实现简单,后台服务器、带宽要求高、三方API调用等成本高
自研原生方案 实现难度比较高,上线稳定周期较长
AI运动识别插件原生方案 实现简单,成本低,且成熟稳定、开箱即用

根据上面的综合对比得知,离线方案投入的成本和体验不成正比,所以在新开发应用中不应将离线方案纳入考虑范围;无特殊的需求团队建议直接使用AI运动识别插件方案,投入成本小且能避免很多实现陷井。

相关文章
|
19小时前
|
人工智能 Serverless API
aliyun解决方案评测|主动式智能导购AI助手构建
《主动式智能导购AI助手构建》方案结合百炼大模型与函数计算,提供高效智能导购服务。然而,实际体验中发现官方教程的说明顺序有待优化,特别是关于百炼大模型服务开通及API-key的使用指引不够清晰,导致初次使用者需查阅额外资料。此外,架构设计和实践原理在部署过程中逐步展现,有助于理解,但针对生产环境的具体指导还需进一步完善以满足实际需求。为优化用户体验,建议调整文档中的步骤顺序,确保新手能更顺畅地完成部署和测试。
60 27
|
1天前
|
人工智能 数据库连接 API
在部署《主动式智能导购 AI 助手构建》解决方案的过程中,整体体验还是相对顺畅的,但确实遇到了一些问题,文档提供的引导也有所不足,以下是详细的体验评估
在部署《主动式智能导购 AI 助手构建》解决方案的过程中,整体体验还是相对顺畅的,但确实遇到了一些问题,文档提供的引导也有所不足,以下是详细的体验评估
|
5天前
|
人工智能 算法 搜索推荐
《主动式智能导购AI助手构建》解决方案评测
《主动式智能导购AI助手构建》解决方案评测
32 18
|
4天前
|
人工智能 自然语言处理 监控
解决方案评测:主动式智能导购AI助手构建
作为一名数据工程师,我体验了主动式智能导购AI助手构建解决方案,并进行了详细评测。该方案通过百炼大模型和函数计算实现智能推荐与高并发处理,部署文档详尽但部分细节如模型调优需改进。架构设计清晰,前端支持自然语言处理与语音识别,中间件确保实时数据同步。生产环境部署顺畅,但在系统监控方面可进一步优化。总体而言,该方案在零售行业具有显著应用潜力,值得尝试。
35 17
|
1天前
|
人工智能 安全 前端开发
《主动式智能导购 AI 助手构建》解决方案评测
在部署《主动式智能导购 AI 助手构建》解决方案时,需关注以下四方面: 1. **引导与文档支持**:官方应提供细致、易懂的引导步骤,涵盖环境搭建、模块配置及常见问题解答。遇到错误及时截图反馈。 2. **原理与架构理解**:深入探究智能导购的工作原理和系统架构,从前端到后端各层运作机制,明确模块职责与扩展性。 3. **关键技术洞察**:理解百炼大模型和函数计算的应用,确保其适配场景并高效运行,通过截图反馈技术难题。 4. **生产环境评估**:评估方案在实际业务中的适用性,如安全防护和数据接入指导,确保高并发下的稳定性和全面性。 认真评测这些要点,助力方案持续优化。
25 11
|
3天前
|
人工智能 自然语言处理 算法
主动式智能导购 AI 助手解决方案实践与测评
主动式智能导购 AI 助手解决方案实践与测评
|
6天前
|
传感器 机器学习/深度学习 人工智能
AI视频监控卫士技术介绍:智能化河道管理解决方案
AI视频监控卫士系统,通过高清摄像头、智能传感器和深度学习技术,实现河道、水库、城市水务及生态保护区的全天候、全覆盖智能监控。系统能够自动识别非法行为、水质变化和异常情况,并实时生成警报,提升管理效率和精准度。
38 13
|
4天前
|
人工智能 算法 搜索推荐
《主动式智能导购AI助手构建》解决方案用户评测
《主动式智能导购AI助手构建》提供了详尽的文档支持,涵盖环境准备、配置项设置等,配有图表和实例代码,适合新手上手。部署中遇到环境变量设置和网络连接问题,通过官方文档与技术支持解决。建议增加FAQ内容及错误日志说明。该方案采用Multi-Agent架构,结合百炼大模型和函数计算,实现精准推荐和高效响应。生产环境部署指导基本满足需求,但需加强异常处理指导。整体而言,此解决方案创新实用,推动电商领域发展。
|
8天前
|
人工智能 小程序 API
【一步步开发AI运动小程序】十七、如何识别用户上传视频中的人体、运动、动作、姿态?
【云智AI运动识别小程序插件】提供人体、运动、姿态检测的AI能力,支持本地原生识别,无需后台服务,具有速度快、体验好、易集成等优点。本文介绍如何使用该插件实现用户上传视频的运动识别,包括视频解码抽帧和人体识别的实现方法。
|
3月前
|
人工智能 运维 大数据
阿里云“触手可及,函数计算玩转 AI 大模型”解决方案评测报告
阿里云“触手可及,函数计算玩转 AI 大模型”解决方案评测报告
118 2

热门文章

最新文章