NumPy 教程 之 NumPy 副本和视图 5

简介: NumPy副本和视图教程介绍副本与视图的区别:副本是对原始数据的完全拷贝,修改副本不会影响原始数据;而视图则是对原始数据的引用,修改视图会影响原始数据。视图通常在切片操作或使用`view()`函数时产生;副本则在序列切片操作、调用`deepCopy()`或使用`copy()`函数时生成。示例展示了使用`copy()`函数创建副本,并验证了修改副本不会改变原始数据。

NumPy 教程 之 NumPy 副本和视图 5

NumPy 副本和视图

副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。

视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。

视图一般发生在:

1、numpy 的切片操作返回原数据的视图。
2、调用 ndarray 的 view() 函数产生一个视图。

副本一般发生在:

Python 序列的切片操作,调用deepCopy()函数。
调用 ndarray 的 copy() 函数产生一个副本。

副本或深拷贝

ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

实例

import numpy as np

a = np.array([[10,10], [2,3], [4,5]])
print ('数组 a:')
print (a)
print ('创建 a 的深层副本:')
b = a.copy()
print ('数组 b:')
print (b)

b 与 a 不共享任何内容
print ('我们能够写入 b 来写入 a 吗?')
print (b is a)
print ('修改 b 的内容:')
b[0,0] = 100
print ('修改后的数组 b:')
print (b)
print ('a 保持不变:')
print (a)

输出结果为:

数组 a:
[[10 10]
[ 2 3]
[ 4 5]]
创建 a 的深层副本:
数组 b:
[[10 10]
[ 2 3]
[ 4 5]]
我们能够写入 b 来写入 a 吗?
False
修改 b 的内容:
修改后的数组 b:
[[100 10]
[ 2 3]
[ 4 5]]
a 保持不变:
[[10 10]
[ 2 3]
[ 4 5]]

目录
相关文章
|
16天前
|
数据可视化 Python
NumPy 教程 之 NumPy Matplotlib 7
使用Python的绘图库Matplotlib与NumPy结合进行数据可视化,提供Matplotlib作为MatLab开源替代方案的有效方法,以及如何利用plt()函数将数据转换成直观的直方图示例。
32 11
|
16天前
|
Python
NumPy 教程 之 NumPy Matplotlib 6
Matplotlib 是一个强大的 Python 绘图库,能与 NumPy 协同工作,提供类似 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。通过 `numpy.histogram()` 函数示例,展示了如何创建数据频率分布图,该函数接受输入数组和 bin 参数,生成对应频率的直方图。示例代码及输出清晰展示了 bin 的边界与对应频率的关系。
27 11
|
18天前
|
Python
NumPy 教程 之 NumPy Matplotlib 4
使用 Python 的绘图库 Matplotlib,结合 NumPy,生成各种图形,作为 MatLab 的开源替代方案。您将学习到如何用 matplotlib 和 NumPy 包来创建正弦波图形,以及如何在同一图中利用 subplot() 函数组织和展示不同的子图,例如同时绘制正弦和余弦曲线。通过实际代码示例,加深对这些功能的理解。
30 12
|
18天前
|
Python
NumPy 教程 之 NumPy Matplotlib 3
使用Python的绘图库Matplotlib与NumPy结合,创建有效的MatLab开源替代方案。它还支持与PyQt和wxPython等图形工具包搭配使用。通过向`plot()`函数添加特定格式字符串,可以展示离散值而非线性图。提供了多种线型和标记选项,例如实线`-`、虚线`--`、点标记`.`等,以及颜色缩写如蓝色`b`、绿色`g`等。示例代码展示了如何用圆点表示数据点而非线条。
31 10
|
17天前
|
Python
NumPy 教程 之 NumPy Matplotlib 5
Matplotlib 是 Python 的绘图库,配合 NumPy 可作为 MatLab 的开源替代方案,并能与 PyQt 和 wxPython 等图形工具包共同使用。本教程重点讲解 `bar()` 函数用于生成条形图的方法,并通过实例展示了如何创建并显示两组数据的条形图。
26 7
|
19天前
|
Python
NumPy 教程 之 NumPy Matplotlib 2
Matplotlib 是 Python 的绘图库,能与 NumPy 结合使用,提供 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。由于 Matplotlib 默认不支持中文,可以使用思源黑体等字体或系统自带的中文字体(如仿宋)解决这一问题,通过指定字体路径或设置 `plt.rcParams['font.family']` 来实现中文显示。
16 1
|
17天前
|
Python
NumPy 教程 之 NumPy Matplotlib 4
NumPy 教程 之 NumPy Matplotlib 4
8 0
|
9天前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
23 0
|
2月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
47 0
|
10天前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
19 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征