NumPy 教程 之 NumPy 副本和视图 5
NumPy 副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。
视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。
视图一般发生在:
1、numpy 的切片操作返回原数据的视图。
2、调用 ndarray 的 view() 函数产生一个视图。
副本一般发生在:
Python 序列的切片操作,调用deepCopy()函数。
调用 ndarray 的 copy() 函数产生一个副本。
副本或深拷贝
ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。
实例
import numpy as np
a = np.array([[10,10], [2,3], [4,5]])
print ('数组 a:')
print (a)
print ('创建 a 的深层副本:')
b = a.copy()
print ('数组 b:')
print (b)
b 与 a 不共享任何内容
print ('我们能够写入 b 来写入 a 吗?')
print (b is a)
print ('修改 b 的内容:')
b[0,0] = 100
print ('修改后的数组 b:')
print (b)
print ('a 保持不变:')
print (a)
输出结果为:
数组 a:
[[10 10]
[ 2 3]
[ 4 5]]
创建 a 的深层副本:
数组 b:
[[10 10]
[ 2 3]
[ 4 5]]
我们能够写入 b 来写入 a 吗?
False
修改 b 的内容:
修改后的数组 b:
[[100 10]
[ 2 3]
[ 4 5]]
a 保持不变:
[[10 10]
[ 2 3]
[ 4 5]]