AI计算机视觉笔记二十:PaddleOCR环境搭建及测试

简介: OCR技术广泛应用于日常生活中,与人脸识别一样常见。PaddleOCR是一个基于飞桨的OCR工具库,具有超轻量级中文OCR模型,支持中英文数字组合、竖排及长文本识别。本文档详细介绍了PaddleOCR的学习过程,包括环境搭建、安装、样本标注及测试步骤。使用AutoDL云平台进行环境创建,并提供了详细的命令行操作指南,帮助用户顺利完成PaddleOCR的部署与测试。

OCR技术在日常生活中和人脸识别功能一样,是最常见的一种技术。

这里记录一下,OCR学习的全过程。

一、介绍

OCR识别分为两部分,一是检测出文字,二是识别出文字。

PaddleOCR: 基于飞桨的OCR工具库,包含总模型仅8.6M的超轻量级中文OCR,单模型支持中英文数字组合识别、竖排文本识别、长文本识别。

PaddleOCR是一款文本识别效果不输于商用的Python库!在RV1126上也部署成功了。后续将部署到RK3568等NPU板子上。

二、环境创建

使用的是AutoDL云平台,租了一台3060的GPU,价格是1.58元/小时,还是比较划算的,也可以使用其他的。

1、环境搭建

# 创建
conda create -n paddle python=3.8
# 激活
conda activate paddle

2、下载paddleocr

git clone https://github.com/PaddlePaddle/PaddleOCR.git

3、安装轮子

cd PaddleOCR
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

1)安装出错:
Building wheel for lanms-neo (pyproject.toml) ... error error: subprocess-exited-with-error

处理:

解决PaddleOCR安装lanms-neo时报错,Could not build wheels for lanms-neo ..._樱阙诗汀的博客-CSDN博客

2)出错:
ERROR: Failed building wheel for Polygon3

处理

打开网址 https://www.lfd.uci.edu/~gohlke/pythonlibs/,下载Polygon3-3.0.9.1-cp38-cp38-win_amd64.whl

安装


pip install Polygon3-3.0.9.1-cp38-cp38-win_amd64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple

3)出错:
ERROR: Failed building wheel for lanms-neo

处理

报错ERROR: Could not build wheels for lanms-neo导致Failed to build lanms-neo情况之一分析与解决_星晴的蜗牛的博客-CSDN博客

4、标记样本

1)安装paddlepaddle:

开始使用_飞桨-源于产业实践的开源深度学习平台

使用的是CPU的安装方式, 因为仅仅用于标记:

# 安装paddle
pip install paddlepaddle==2.4.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
​
# 验证安装
安装完成后您可以使用 python 进入 python 解释器,输入import paddle ,再输入 paddle.utils.run_check()
如果出现PaddlePaddle is installed successfully!,说明您已成功安装。
#卸载
python -m pip uninstall paddlepaddle
安装好paddlepadle之后,

2)启动标注工具

# 安装标注工具
cd PaddleOCR/PPOCRLabel
​
python setup.py bdist_wheel 
​
pip install .\dist\PPOCRLabel-2.1.3-py2.py3-none-any.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
​
PPOCRLabel --lang ch
打开PPOCRLabel

PPOCRLabel --lang ch

3)PPOCRLabel使用说明

PPOCRLabel使用自行了解

5、测试

PaddleOCR提供了一系列测试图片,点击这里下载并解压

下载地址

https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip

执行测试

paddleocr --image_dir ./ppocr_img/imgs/11.jpg --use_angle_cls true --use_gpu false

运行正常

相关文章
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在软件测试中的转型力量###
本文深入探讨了人工智能(AI)技术在软件测试领域的应用现状与未来趋势,通过分析AI如何优化测试流程、提高测试效率与质量,揭示了AI赋能下软件测试行业的转型路径。传统测试方法面临效率低、成本高、覆盖率有限等挑战,而AI技术的引入正逐步改变这一格局,为软件测试带来革命性的变化。 ###
|
2月前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
305 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
2月前
|
人工智能 自然语言处理 搜索推荐
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
Open Notebook 是一款开源的 AI 笔记工具,支持多格式笔记管理,并能自动将笔记转换为博客或播客,适用于学术研究、教育、企业知识管理等多个场景。
155 0
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####
|
3月前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
114 4
|
3月前
|
人工智能 测试技术 Windows
Windows 竞技场:面向下一代AI Agent的测试集
【10月更文挑战第25天】随着人工智能的发展,大型语言模型(LLMs)在多模态任务中展现出巨大潜力。为解决传统基准测试的局限性,研究人员提出了Windows Agent Arena,一个在真实Windows操作系统中评估AI代理性能的通用环境。该环境包含150多个多样化任务,支持快速并行化评估。研究团队还推出了多模态代理Navi,在Windows领域测试中成功率达到19.5%。尽管存在局限性,Windows Agent Arena仍为AI代理的评估和研究提供了新机遇。
65 3
|
3月前
|
机器学习/深度学习 人工智能 安全
探索AI在软件工程中的最新应用:自动化测试与代码审查
探索AI在软件工程中的最新应用:自动化测试与代码审查
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索AI驱动的自动化测试新纪元###
本文旨在探讨人工智能如何革新软件测试领域,通过AI技术提升测试效率、精准度和覆盖范围。在智能算法的支持下,自动化测试不再局限于简单的脚本回放,而是能够模拟复杂场景、预测潜在缺陷,并实现自我学习与优化。我们正步入一个测试更加主动、灵活且高效的新时代,本文将深入剖析这一变革的核心驱动力及其对未来软件开发的影响。 ###
|
4月前
|
机器学习/深度学习 人工智能 安全
AI真的能与人类数据科学家竞争吗?OpenAI的新基准对其进行了测试
AI真的能与人类数据科学家竞争吗?OpenAI的新基准对其进行了测试
|
3月前
|
机器学习/深度学习 数据采集 人工智能
自动化测试的未来:AI与机器学习的融合之路
【10月更文挑战第41天】随着技术的快速发展,软件测试领域正经历一场由人工智能和机器学习驱动的革命。本文将探讨这一趋势如何改变测试流程、提高测试效率以及未来可能带来的挑战和机遇。我们将通过具体案例分析,揭示AI和ML在自动化测试中的应用现状及其潜力。
64 0