Redis内存回收

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis 基于内存存储,性能卓越,但单节点内存不宜过大,以免影响持久化或主从同步。可通过配置 `maxmemory` 限制最大内存。内存达到上限时,Redis采用两种策略:内存过期策略和内存淘汰策略。过期策略包括惰性删除和周期删除,后者分为 SLOW 和 FAST 模式。内存淘汰策略有八种,如 LRU、LFU 和随机淘汰等,用于在内存不足时释放空间。官方推荐使用 LFU 算法。

1.Redis内存回收

Redis之所以性能强,最主要的原因就是基于内存存储。然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。

我们可以通过修改redis.conf文件,添加下面的配置来配置Redis的最大内存:

代码解读

复制代码

maxmemory 1gb

当内存达到上限,就无法存储更多数据了。因此,Redis内部会有两套内存回收的策略:

  • 内存过期策略
  • 内存淘汰策略

1.1.内存过期处理

存入Redis中的数据可以配置过期时间,到期后再次访问会发现这些数据都不存在了,也就是被过期清理了。

1.1.1.过期命令

Redis中通过expire命令可以给KEY设置TTL(过期时间),例如:

bash

代码解读

复制代码

# 写入一条数据
set num 123
# 设置20秒过期时间
expire num 20

不过set命令本身也可以支持过期时间的设置:

bash

代码解读

复制代码

# 写入一条数据并设置20s过期时间
set num EX 20

当过期时间到了以后,再去查询数据,会发现数据已经不存在。

1.1.2.过期策略

那么问题来了:

  • Redis如何判断一个KEY是否过期呢?
  • Redis又是何时删除过期KEY的呢?

Redis不管有多少种数据类型,本质是一个KEY-VALUE的键值型数据库,而这种键值映射底层正式基于HashTable来实现的,在Redis中叫做Dict.

来看下RedisDB的底层源码:

ini

代码解读

复制代码

typedef struct redisDb {
    dict dict;                 / The keyspace for this DB , 也就是存放KEY和VALUE的哈希表*/
    dict *expires;              /* 同样是哈希表,但保存的是设置了TTL的KEY,及其到期时间*/
    dict *blocking_keys;        /* Keys with clients waiting for data (BLPOP)*/
    dict *ready_keys;           /* Blocked keys that received a PUSH */
    dict *watched_keys;         /* WATCHED keys for MULTI/EXEC CAS / int id;                     / Database ID, 0 ~ 15 / long long avg_ttl;          / Average TTL, just for stats / unsigned long expires_cursor; / Cursor of the active expire cycle. */
    list *defrag_later;         /* List of key names to attempt to defrag one by one, gradually. */
} redisDb;

Redis如何判断KEY是否过期呢?

在Redis中会有两个Dict,也就是HashTable,其中一个记录KEY-VALUE键值对,另一个记录KEY和过期时间。要判断一个KEY是否过期,只需要到记录过期时间的Dict中根据KEY查询即可。

Redis是何时删除过期KEY的呢?

Redis并不会在KEY过期时立刻删除KEY,因为要实现这样的效果就必须给每一个过期的KEY设置时钟,并监控这些KEY的过期状态。无论对CPU还是内存都会带来极大的负担。

Redis的过期KEY删除策略有两种:

  • 惰性删除
  • 周期删除

惰性删除,顾明思议就是过期后不会立刻删除。那在什么时候删除呢?

Redis会在每次访问KEY的时候判断当前KEY有没有设置过期时间,如果有,过期时间是否已经到期。对应的源码如下:

scss

代码解读

复制代码

// db.c
// 寻找要执行写操作的key
robj *lookupKeyWriteWithFlags(redisDb *db, robj *key, int flags) {
    // 检查key是否过期,如果过期则删除
    expireIfNeeded(db,key);
    return lookupKey(db,key,flags);
}

// 寻找要执行读操作的key
robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) {
    robj *val;
    // 检查key是否过期,如果过期则删除
    if (expireIfNeeded(db,key) == 1) {
        // 略 ...
    }
    val = lookupKey(db,key,flags);
    if (val == NULL)
        goto keymiss;
    server.stat_keyspace_hits++;
    return val;
}

周期删除:顾明思议是通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。

执行周期有两种:

  • SLOW模式: Redis会设置一个定时任务serverCron(),按照server.hz的频率来执行过期key清理
  • FAST模式: Redis的每个事件循环前执行过期key清理(事件循环就是NIO事件处理的循环)。

SLOW模式规则:

  • ① 执行频率受server.hz影响,默认为10,即每秒执行10次,每个执行周期100ms。
  • ② 执行清理耗时不超过一次执行周期的25%,即25ms.
  • ③ 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
  • ④ 如果没达到时间上限(25ms)并且过期key比例大于10%,再进行一次抽样,否则结束

FAST模式规则(过期key比例小于10%不执行):

  • ① 执行频率受beforeSleep()调用频率影响,但两次FAST模式间隔不低于2ms
  • ② 执行清理耗时不超过1ms
  • ③ 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
  • ④ 如果没达到时间上限(1ms)并且过期key比例大于10%,再进行一次抽样,否则结束

1.2.内存淘汰策略

对于某些特别依赖于Redis的项目而言,仅仅依靠过期KEY清理是不够的,内存可能很快就达到上限。因此Redis允许设置内存告警阈值,当内存使用达到阈值时就会主动挑选部分KEY删除以释放更多内存。这叫做内存淘汰机制。

1.2.1.内存淘汰时机

那么问题来了,当内存达到阈值时执行内存淘汰,但问题是Redis什么时候会执去判断内存是否达到预警呢?

Redis每次执行任何命令时,都会判断内存是否达到阈值:

scss

代码解读

复制代码

// server.c中处理命令的部分源码
int processCommand(client *c) {
    // ... 略
    if (server.maxmemory && !server.lua_timedout) {
        // 调用performEvictions()方法尝试进行内存淘汰
        int out_of_memory = (performEvictions() == EVICT_FAIL);
        // ... 略
        if (out_of_memory && reject_cmd_on_oom) {
            // 如果内存依然不足,直接拒绝命令
            rejectCommand(c, shared.oomerr);
            return C_OK;
        }
    }
}

1.2.2.淘汰策略

好了,知道什么时候尝试淘汰了,那具体Redis是如何判断该淘汰哪些Key的呢?

Redis支持8种不同的内存淘汰策略:

  • noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。
  • volatile``-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
  • allkeys``-random:对全体key ,随机进行淘汰。也就是直接从db->dict中随机挑选
  • volatile-random:对设置了TTL的key ,随机进行淘汰。也就是从db->expires中随机挑选。
  • allkeys-lru: 对全体key,基于LRU算法进行淘汰
  • volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
  • allkeys-lfu: 对全体key,基于LFU算法进行淘汰
  • volatile-lfu: 对设置了TTL的key,基于LFI算法进行淘汰

比较容易混淆的有两个算法:

  • LRULeast Recently Used),最近最久未使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
  • LFULeast Frequently Used),最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。

Redis怎么知道某个KEY的最近一次访问时间或者是访问频率呢?

RedisObject的结构:

其中的lru就是记录最近一次访问时间和访问频率的。当然,你选择LRULFU时的记录方式不同:

  • LRU:以秒为单位记录最近一次访问时间,长度24bit
  • LFU:高16位以分钟为单位记录最近一次访问时间,低8位记录逻辑访问次数

时间就不说了,那么逻辑访问次数又是怎么回事呢?8位无符号数字最大才255,访问次数超过255怎么办?

这就要聊起Redis的逻辑访问次数算法了,LFU的访问次数之所以叫做逻辑访问次数,是因为并不是每次key被访问都计数,而是通过运算:

  • ① 生成[0,1)之间的随机数R
  • ② 计算 1/(旧次数 * lfu_log_factor + 1),记录为Plfu_log_factor默认为10
  • ③ 如果 R < P ,则计数器 +1,且最大不超过255
  • ④ 访问次数会随时间衰减,距离上一次访问时间每隔 lfu_decay_time 分钟(默认1) ,计数器-1

显然LFU的基于访问频率的统计更符合我们的淘汰目标,因此官方推荐使用LFU算法。

算法我们弄明白了,不过这里大家要注意一下:Redis中的KEY可能有数百万甚至更多,每个KEY都有自己访问时间或者逻辑访问次数。我们要找出时间最早的或者访问次数最小的,难道要把Redis中所有数据排序

要知道Redis的内存淘汰是在每次执行命令时处理的。如果每次执行命令都先对全量数据做内存排序,那命令的执行时长肯定会非常长,这是不现实的。

所以Redis采取的是抽样法,即每次抽样一定数量(maxmemory_smples)的key,然后基于内存策略做排序,找出淘汰优先级最高的,删除这个key。这就导致Redis的算法并不是真正的LRU,而是一种基于抽样的近似LRU算法

不过,在Redis3.0以后改进了这个算法,引入了一个淘汰候选池,抽样的key要与候选池中的key比较淘汰优先级,优先级更高的才会被放入候选池。然后在候选池中找出优先级最高的淘汰掉,这就使算法的结果更接近与真正的LRU算法了。特别是在抽样值较高的情况下(例如10),可以达到与真正的LRU接近的效果。

这也是官方给出的真正LRU与近似LRU的结果对比:

你可以在图表中看到三种颜色的点形成三个不同的带,每个点就是一个加入的KEY

  • 浅灰色带是被驱逐的对象
  • 灰色带是没有被驱逐的对象
  • 绿色带是被添加的对象

1.3.总结

Redis如何判断KEY是否过期呢?

在Redis中会有两个Dict,也就是HashTable,其中一个记录KEY-VALUE键值对,另一个记录KEY和过期时间。要判断一个KEY是否过期,只需要到记录过期时间的Dict中根据KEY查询即可。

Redis何时删除过期KEY?如何删除?

Redis的过期KEY处理有两种策略,分别是惰性删除和周期删除。

惰性删除是指在每次用户访问某个KEY时,判断KEY的过期时间:如果过期则删除;如果未过期则忽略。

周期删除有两种模式:

  • SLOW模式:通过一个定时任务,定期的抽样部分带有TTL的KEY,判断其是否过期。默认情况下定时任务的执行频率是每秒10次,但每次执行不能超过25毫秒。如果执行抽样后发现时间还有剩余,并且过期KEY的比例较高,则会多次抽样。
  • FAST模式:在Redis每次处理NIO事件之前,都会抽样部分带有TTL的KEY,判断是否过期,因此执行频率较高。但是每次执行时长不能超过1ms,如果时间充足并且过期KEY比例过高,也会多次抽样

当Redis 内存 不足时会怎么做

这取决于配置的内存淘汰策略,Redis支持很多种内存淘汰策略,例如LRU、LFU、Random. 但默认的策略是直接拒绝新的写入请求。而如果设置了其它策略,则会在每次执行命令后判断占用内存是否达到阈值。如果达到阈值则会基于配置的淘汰策略尝试进行内存淘汰,直到占用内存小于阈值为止。

关于 LRU LFU

LRU是最近最久未使用。Redis的Key都是RedisObject,当启用LRU算法后,Redis会在Key的头信息中使用24个bit记录每个key的最近一次使用的时间lru。每次需要内存淘汰时,就会抽样一部分KEY,找出其中空闲时间最长的,也就是now - lru结果最大的,然后将其删除。如果内存依然不足,就重复这个过程。

由于采用了抽样来计算,这种算法只能说是一种近似LRU算法。因此在Redis4.0以后又引入了LFU算法,这种算法是统计最近最少使用,也就是按key的访问频率来统计。当启用LFU算法后,Redis会在key的头信息中使用24bit记录最近一次使用时间和逻辑访问频率。其中高16位是以分钟为单位的最近访问时间,后8位是逻辑访问次数。与LFU类似,每次需要内存淘汰时,就会抽样一部分KEY,找出其中逻辑访问次数最小的,将其淘汰。

逻辑访问次数是如何计算的

由于记录访问次数的只有8bit,即便是无符号数,最大值只有255,不可能记录真实的访问次数。因此Redis统计的其实是逻辑访问次数。这其中有一个计算公式,会根据当前的访问次数做计算,结果要么是次数+1,要么是次数不变。但随着当前访问次数越大,+1的概率也会越低,并且最大值不超过255.

除此以外,逻辑访问次数还有一个衰减周期,默认为1分钟,即每隔1分钟逻辑访问次数会-1。这样逻辑访问次数就能基本反映出一个key的访问热度了。


转载来源:https://juejin.cn/post/7405770868506492943

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
9天前
|
程序员 开发者
分代回收和手动内存管理相比有何优势
分代回收和手动内存管理相比有何优势
|
28天前
|
算法 Java 程序员
内存回收
【10月更文挑战第9天】
41 5
|
28天前
|
存储 缓存 NoSQL
Redis Quicklist 竟让内存占用狂降50%?
【10月更文挑战第11天】
40 2
|
1月前
|
Java 测试技术 Android开发
让星星⭐月亮告诉你,强软弱虚引用类型对象在内存足够和内存不足的情况下,面对System.gc()时,被回收情况如何?
本文介绍了Java中四种引用类型(强引用、软引用、弱引用、虚引用)的特点及行为,并通过示例代码展示了在内存充足和不足情况下这些引用类型的不同表现。文中提供了详细的测试方法和步骤,帮助理解不同引用类型在垃圾回收机制中的作用。测试环境为Eclipse + JDK1.8,需配置JVM运行参数以限制内存使用。
31 2
|
2月前
|
缓存 监控 NoSQL
阿里面试让聊一聊Redis 的内存淘汰(驱逐)策略
大家好,我是 V 哥。粉丝小 A 面试阿里时被问到 Redis 的内存淘汰策略问题,特此整理了一份详细笔记供参考。Redis 的内存淘汰策略决定了在内存达到上限时如何移除数据。希望这份笔记对你有所帮助!欢迎关注“威哥爱编程”,一起学习与成长。
|
2月前
|
存储 Prometheus NoSQL
Redis 内存突增时,如何定量分析其内存使用情况
【9月更文挑战第21天】当Redis内存突增时,可采用多种方法分析内存使用情况:1)使用`INFO memory`命令查看详细内存信息;2)借助`redis-cli --bigkeys`和RMA工具定位大键;3)利用Prometheus和Grafana监控内存变化;4)优化数据类型和存储结构;5)检查并调整内存碎片率。通过这些方法,可有效定位并解决内存问题,保障Redis稳定运行。
|
1月前
|
算法 Java
JVM进阶调优系列(3)堆内存的对象什么时候被回收?
堆对象的生命周期是咋样的?什么时候被回收,回收前又如何流转?具体又是被如何回收?今天重点讲对象GC,看完这篇就全都明白了。
|
2月前
|
缓存 NoSQL 算法
14)Redis 在内存用完时会怎么办?如何处理已过期的数据?
14)Redis 在内存用完时会怎么办?如何处理已过期的数据?
56 0
|
2月前
|
存储 缓存 NoSQL
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
71 0
|
2月前
|
数据安全/隐私保护 虚拟化
基于DAMON的内存能回收 【ChatGPT】
基于DAMON的内存能回收 【ChatGPT】