165k star,所有算法都用python实现,GitHub最大的开源算法库,

简介: 【8月更文挑战第21天】

github上最大的开源算法库,可以用于算法的学习和查询,大部分语言都有实现方案,其中python相关达到了165k star。

image.png

1 TheAlgorithms/Python简介

所有算法都用python实现的案例展示,常规的算法都可以在这里找到,应该是github上最全的开源算法库了。

什么是算法?

算法是一系列规则,这些规则通过获得一个或者多个输入,在内部进行计算、进行数据处理后,产生一个或者多个输出。简单地说,算法让生活更加美好。从复杂的数据处理、散列,到简单的数学运算,算法遵从一系列步骤来产出一个有用的结果。一个最简单的算法就是一个接受两个输入,把他们相加,然后输出他们的和的函数。

image.png

2 如何查看?

github可以访问的直接到如下链接去下载就可以

https://github.com/TheAlgorithms/Python

github如果无法访问的话,可以后台直接私信

算法案例可以直接访问如下链接:

https://the-algorithms.com/zh_Hans

3 部分算法代码展示

排序

Random Normal Distribution Quicksort

from random import randint
from tempfile import TemporaryFile

import numpy as np


def _in_place_quick_sort(a, start, end):
    count = 0
    if start < end:
        pivot = randint(start, end)
        temp = a[end]
        a[end] = a[pivot]
        a[pivot] = temp

        p, count = _in_place_partition(a, start, end)
        count += _in_place_quick_sort(a, start, p - 1)
        count += _in_place_quick_sort(a, p + 1, end)
    return count


def _in_place_partition(a, start, end):
    count = 0
    pivot = randint(start, end)
    temp = a[end]
    a[end] = a[pivot]
    a[pivot] = temp
    new_pivot_index = start - 1
    for index in range(start, end):
        count += 1
        if a[index] < a[end]:  # check if current val is less than pivot value
            new_pivot_index = new_pivot_index + 1
            temp = a[new_pivot_index]
            a[new_pivot_index] = a[index]
            a[index] = temp

    temp = a[new_pivot_index + 1]
    a[new_pivot_index + 1] = a[end]
    a[end] = temp
    return new_pivot_index + 1, count

数据结构 哈希

#!/usr/bin/env python3

from .hash_table import HashTable


class QuadraticProbing(HashTable):
    """
    Basic Hash Table example with open addressing using Quadratic Probing
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def _collision_resolution(self, key, data=None):
        i = 1
        new_key = self.hash_function(key + i * i)

        while self.values[new_key] is not None and self.values[new_key] != key:
            i += 1
            new_key = (
                self.hash_function(key + i * i)
                if not self.balanced_factor() >= self.lim_charge
                else None
            )

            if new_key is None:
                break

        return new_key

密码

Vigenere Cipher

LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"


def main() -> None:
    message = input("Enter message: ")
    key = input("Enter key [alphanumeric]: ")
    mode = input("Encrypt/Decrypt [e/d]: ")

    if mode.lower().startswith("e"):
        mode = "encrypt"
        translated = encrypt_message(key, message)
    elif mode.lower().startswith("d"):
        mode = "decrypt"
        translated = decrypt_message(key, message)

    print(f"\n{mode.title()}ed message:")
    print(translated)


def encrypt_message(key: str, message: str) -> str:
    """
    >>> encrypt_message('HDarji', 'This is Harshil Darji from Dharmaj.')
    'Akij ra Odrjqqs Gaisq muod Mphumrs.'
    """
    return translate_message(key, message, "encrypt")


def decrypt_message(key: str, message: str) -> str:
    """
    >>> decrypt_message('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.')
    'This is Harshil Darji from Dharmaj.'
    """
    return translate_message(key, message, "decrypt")


def translate_message(key: str, message: str, mode: str) -> str:
    translated = []
    key_index = 0
    key = key.upper()

    for symbol in message:
        num = LETTERS.find(symbol.upper())
        if num != -1:
            if mode == "encrypt":
                num += LETTERS.find(key[key_index])
            elif mode == "decrypt":
                num -= LETTERS.find(key[key_index])

            num %= len(LETTERS)

            if symbol.isupper():
                translated.append(LETTERS[num])
            elif symbol.islower():
                translated.append(LETTERS[num].lower())

            key_index += 1
            if key_index == len(key):
                key_index = 0
        else:
            translated.append(symbol)
    return "".join(translated)


if __name__ == "__main__":
    main()

总结

实现仅用于学习目的。它们的效率可能低于 Python 标准库中的实现。可以自行决定使用它们。

相关文章
|
25天前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
57 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
24天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
79 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
24天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
73 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
23天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
51 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
20天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
45 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3天前
|
算法 安全 Go
RSA加密算法详解与Python和Go实现
RSA加密算法详解与Python和Go实现
8 1
|
3天前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
9 1
|
1月前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
61 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
16天前
|
Linux Android开发 iOS开发
开源的Python库,用于开发多点触控应用程序
Kivy是一款开源Python库,专为开发多点触控应用设计,支持Android、iOS、Linux、OS X和Windows等平台。本文将指导你使用Kivy创建“Hello World”应用并打包成Android APK。首先通过`pip install kivy`安装Kivy,然后创建并运行一个简单的Python脚本。接着,安装Buildozer并通过`buildozer init`生成配置文件,修改相关设置后,运行`buildozer -v android debug`命令打包应用。完成构建后,你将在`./bin/`目录下找到类似`your-app-debug.apk`的文件。
18 2
|
17天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
35 2