Golang协程goroutine的调度与状态变迁分析

简介: 文章深入分析了Golang中goroutine的调度和状态变迁,包括Grunnable、Gwaiting、Grunning和Gsyscall等状态,以及它们之间的转换条件和原理,帮助理解Go调度器的内部机制。

前言

Go运行时的调度器其实可以看成OS调度器的某种简化版 本,一个goroutine在其生命周期之中,同样包含了各种状态的变换。弄清了这些状态及状态间切换的原理,对搞清整个Go调度器会非常有帮助。

以面是一张goroutine的状态迁移图,圆形框表示状态,箭头及文字信息表示切换的方向和条件:

状态

下面来简单分析一下, 其中状态 Gidle 在Go调度器代码中并没有被真正被使用到,所以直接忽略。 事实上,一旦runtime新建了一个goroutine结构,就会将其状态置为Grunnable并加入到任务队列中,

Grunnable

Golang中,一个协程在以下几种情况下会被设置为 Grunnable状态:

1. 创建

Go 语言中,包括用户入口函数main·main的执行goroutine在内的所有任务,都是通过runtime·newproc -> runtime·newproc1 这两个函数创建的,前者其实就是对后者的一层封装,提供可变参数支持,Go语言的go关键字最终会被编译器映射为对runtime·newproc的调用。当runtime·newproc1完成了资源的分配及初始化后,新任务的状态会被置为Grunnable,然后被添加到当前 P 的私有任务队列中,等待调度执行。相关初始化代码如下:

G* runtime·newproc1(FuncVal *fn, byte *argp, int32 narg, int32 nret, void *callerpc) 
{
    G *newg;
    P *p;
    int32 siz;
    ......
    // 获取当前g所在的p,从p中创建一个新g(newg)
    p = g->m->p;
    if((newg = gfget(p)) == nil) {
        ......    
    }
    ......
    // 设置Goroutine状态为Grunnable
    runtime·casgstatus(newg, Gdead,             
        Grunnable);
    .....
    // 新创建的g添加到run队列中
    runqput(p, newg);
    ......
}

2. 阻塞任务唤醒

当某个阻塞任务(状态为Gwaiting)的等待条件满足而被唤醒时—如一个任务G#1向某个channel写入数据将唤醒之前等待读取该channel数据的任务G#2——G#1通过调用runtime·ready将G#2状态重新置为Grunnable并添加到任务队列中。

// Mark gp ready to run.
void
runtime·ready(G *gp)
{
    uint32 status;
    status = runtime·readgstatus(gp);
    // Mark runnable.
    g->m->locks++;  
    if((status&~Gscan) != Gwaiting){
        dumpgstatus(gp);
        runtime·throw("bad g->status in ready");
    }
    // 设置被唤醒的g状态从Gwaiting转变至Grunnable
    runtime·casgstatus(gp, Gwaiting, Grunnable);
    // 添加到运行队列中
    runqput(g->m->p, gp);
    if(runtime·atomicload(&runtime·sched.npidle) != 0 && runtime·atomicload(&runtime·sched.nmspinning) == 0) 
    // 看起来这是个比较重要的函数,但还不是很理解
    wakep();
    g->m->locks--;
    if(g->m->locks == 0 && g->preempt) 
        g->stackguard0 = StackPreempt;
}

其他

另外的路径是从Grunning和Gsyscall状态变换到Grunnable,我们也都合并到后面介绍。 总之,处于Grunnable的任务一定在某个任务队列中,随时等待被调度执行。

Gwaiting

当一个任务需要的资源或运行条件不能被满足时,需要调用runtime·park函数进入该状态,之后除非等待条件满足,否则任务将一直处于等待状态不能执行。channel,Go语言的定时器、网络IO操作都可能引起任务的阻塞。

// runtime·park continuation on g0.
void
runtime·park_m(G *gp)
{
    bool ok;

    runtime·casgstatus(gp, Grunning, Gwaiting);
    dropg();

    if(g->m->waitunlockf) {
        ok = g->m->waitunlockf(gp, g->m->waitlock);
        g->m->waitunlockf = nil;
        g->m->waitlock = nil;
        if(!ok) {
            runtime·casgstatus(gp, Gwaiting, Grunnable);
            execute(gp);  // Schedule it back, never returns.
        }
    }

    schedule();
}

runtime·park函数包含3个参数,第一个是解锁函数指针,第二个是一个Lock指针,最后是一个字符串用以描述阻塞的原因。 很明显,前两个参数是配对的结构——由于任务阻塞前可能获得了某些Lock,这些Lock必须在任务状态保存完成后才能释放,以避免数据竞争。我们知道channel必须通过Lock确保互斥访问,一个阻塞的任务G#1需要将自己放到channel的等待队列中,如果在完成上下文保存前就释放了Lock,则可能导致G#2将未知状态的G#1置为Grunnable,因此释放Lock必须在runtime·park内完成。 由于阻塞时任务持有的Lock类型不尽相同——如Select操作的锁实际上是一组Lock的集合——因此需要特别指出Unlock的具体方式。 最后一个参数主要是在gdb调试的时候方便发现任务阻塞的原因。 顺便说一下,当所有的任务都处于Gwaiting状态时,也就表示当前程序进入了死锁态,不可能继续执行了,那么runtime会检测到这种情况,并输出所有Gwaiting任务的backtrace信息。

Grunning

所有状态为Grunnable的任务都可能通过findrunnable函数被调度器(P&M)获取,进而通过execute函数将其状态切换到Grunning, 最后调用runtime·gogo加载其上下文并执行。

// One round of scheduler: find a runnable goroutine and execute it. Never returns.
static void
schedule(void)
{
    G *gp;
    uint32 tick;

    if(g->m->locks)
        runtime·throw("schedule: holding locks");

    if(g->m->lockedg) {
        stoplockedm();
        execute(g->m->lockedg);  // Never returns.
    }

top:
    if(runtime·sched.gcwaiting) {
        gcstopm();
        goto top;
    }

    gp = nil;
    // 挑一个可运行的g,并执行
    ......
    if(gp == nil) {
        gp = findrunnable();  // blocks until work is available
        resetspinning();
    }
    ......
    execute(gp);
}

// Schedules gp to run on the current M.
// Never returns.
static void
execute(G *gp)
{
    int32 hz;
    // 状态从Grunnable转变为Grunning
    runtime·casgstatus(gp, Grunnable, Grunning);
    gp->waitsince = 0;
    gp->preempt = false;
    gp->stackguard0 = gp->stack.lo + StackGuard;
    g->m->p->schedtick++;
    g->m->curg = gp;
    gp->m = g->m;

    // Check whether the profiler needs to be turned on or off.
    hz = runtime·sched.profilehz;
    if(g->m->profilehz != hz)
        runtime·resetcpuprofiler(hz);
    // 真正执行g
    runtime·gogo(&gp->sched);
}

Go本质采用一种协作式调度方案,一个正在运行的任务,需要通过调用yield的方式显式让出处理器;在Go1.2之后,运行时也开始支持一定程度的任务抢占——当系统线程sysmon发现某个任务执行时间过长或者runtime判断需要进行垃圾收集时,会将任务置为”可被抢占“的,当该任务下一次函数调用时, 就会让出处理器并重新切会到Grunnable状态。

Gsyscall

Go运行时为了保证高的并发性能,都会在任务执行OS系统调用前,先调用runtime·entersyscall函数将自己的状态置为Gsyscall——如果系统调用是阻塞式的或者执行过久,则将当前M与P分离——当系统调用返回后,执行线程调用runtime·exitsyscall尝试重新获取P,如果成功且当前任务没有被抢占,则将状态切回Grunning并继续执行;否则将状态置为Grunnable,等待再次被调度执行。

// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
void
runtime·park(bool(*unlockf)(G*, void*), void *lock, String reason)
{
    void (*fn)(G*);

    g->m->waitlock = lock;
    g->m->waitunlockf = unlockf;
    g->waitreason = reason;
    fn = runtime·park_m;
    runtime·mcall(&fn);
}
// runtime·park continuation on g0.
void
runtime·park_m(G *gp)
{
    bool ok;
    // 设置当前状态从Grunning-->Gwaiting
    runtime·casgstatus(gp, Grunning, Gwaiting);
    // 当前g放弃m
    dropg();

    if(g->m->waitunlockf) {
        ok = g->m->waitunlockf(gp, g->m->waitlock);
        g->m->waitunlockf = nil;
        g->m->waitlock = nil;
        if(!ok) {
            runtime·casgstatus(gp, Gwaiting, Grunnable);
            execute(gp);  // Schedule it back, never returns.
        }
    }

    schedule();
}

Gdead

最后,当一个任务执行结束后,会调用runtime·goexit结束自己的生命——将状态置为Gdead,并将结构体链到一个属于当前P的空闲G链表中,以备后续使用。

Go语言的并发模型基本上遵照了CSP模型,goroutine间完全靠channel通信,没有像Unix进程的wait或waitpid的等待机制,也没有类似“POSIX Thread”中的pthread_join的汇合机制,更没有像kill或signal这类的中断机制。每个goroutine结束后就自行退出销毁,不留一丝痕迹。

相关文章
|
3月前
|
安全 Go
Golang语言goroutine协程并发安全及锁机制
这篇文章是关于Go语言中多协程操作同一数据问题、互斥锁Mutex和读写互斥锁RWMutex的详细介绍及使用案例,涵盖了如何使用这些同步原语来解决并发访问共享资源时的数据安全问题。
89 4
|
24天前
|
存储 安全 测试技术
GoLang协程Goroutiney原理与GMP模型详解
本文详细介绍了Go语言中的Goroutine及其背后的GMP模型。Goroutine是Go语言中的一种轻量级线程,由Go运行时管理,支持高效的并发编程。文章讲解了Goroutine的创建、调度、上下文切换和栈管理等核心机制,并通过示例代码展示了如何使用Goroutine。GMP模型(Goroutine、Processor、Machine)是Go运行时调度Goroutine的基础,通过合理的调度策略,实现了高并发和高性能的程序执行。
78 29
|
15天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
22天前
|
Go 计算机视觉
在Golang高并发环境中如何进行协程同步?
在此示例中,使用互斥锁来保护对共享计数器变量 c 的访问,确保并发的 HTTP 请求不会产生数据竞争。
40 3
|
22天前
|
负载均衡 算法 Go
GoLang协程Goroutiney原理与GMP模型详解
【11月更文挑战第4天】Goroutine 是 Go 语言中的轻量级线程,由 Go 运行时管理,创建和销毁开销小,适合高并发场景。其调度采用非抢占式和协作式多任务处理结合的方式。GMP 模型包括 G(Goroutine)、M(系统线程)和 P(逻辑处理器),通过工作窃取算法实现负载均衡,确保高效利用系统资源。
|
3月前
|
Go 调度
Golang语言goroutine协程篇
这篇文章是关于Go语言goroutine协程的详细教程,涵盖了并发编程的常见术语、goroutine的创建和调度、使用sync.WaitGroup控制协程退出以及如何通过GOMAXPROCS设置程序并发时占用的CPU逻辑核心数。
55 4
Golang语言goroutine协程篇
|
3月前
|
Go
Golang语言之管道channel快速入门篇
这篇文章是关于Go语言中管道(channel)的快速入门教程,涵盖了管道的基本使用、有缓冲和无缓冲管道的区别、管道的关闭、遍历、协程和管道的协同工作、单向通道的使用以及select多路复用的详细案例和解释。
121 4
Golang语言之管道channel快速入门篇
|
3月前
|
Go
Golang语言文件操作快速入门篇
这篇文章是关于Go语言文件操作快速入门的教程,涵盖了文件的读取、写入、复制操作以及使用标准库中的ioutil、bufio、os等包进行文件操作的详细案例。
68 4
Golang语言文件操作快速入门篇
|
3月前
|
Go
Golang语言之gRPC程序设计示例
这篇文章是关于Golang语言使用gRPC进行程序设计的详细教程,涵盖了RPC协议的介绍、gRPC环境的搭建、Protocol Buffers的使用、gRPC服务的编写和通信示例。
106 3
Golang语言之gRPC程序设计示例
|
3月前
|
Go
Golang语言错误处理机制
这篇文章是关于Golang语言错误处理机制的教程,介绍了使用defer结合recover捕获错误、基于errors.New自定义错误以及使用panic抛出自定义错误的方法。
51 3

相关实验场景

更多