GoLang GPM模型

简介: 本文介绍了 Go 语言中的 goroutine 及其调度器(Go Scheduler)的工作原理。goroutine 并非传统意义上的协程,而是基于两级线程模型实现的轻量级并发单元。文章详细解释了三种主流线程模型(内核级、用户级和两级线程模型)的特点,并重点阐述了 G-P-M 模型(Goroutine、Processor、Machine)的工作机制,包括调度算法、阻塞处理等。通过动态栈管理和高效的调度器,Go 程序能够轻松支持成千上万个并发任务。

前言

Goroutine & Scheduler

goroutine 是什么?通常 goroutine 会被当做 coroutine(协程)的 golang 实现,但实际上,goroutine 并非传统意义上的协程,现在主流的线程模型分三种:内核级线程模型、用户级线程模型和两级线程模型(也称混合型线程模型),传统的协程库属于用户级线程模型,而 goroutine 和它的 Go Scheduler 在底层实现上其实是属于两级线程模型

线程模型

优/缺点 内核级 用户级 混合型
优点 简单,真正并行 创建成本低 all
缺点 成本高 并发性能不完全 \

内核级线程模型

用户线程与内核线程 KSE 是一对一(1 : 1)的映射模型,也就是每一个用户线程绑定一个实际的内核线程,而线程的调度则完全交付给操作系统内核去做,应用程序对线程的创建、终止以及同步都基于内核提供的系统调用来完成,大部分编程语言的线程库(比如 Java 的 java.lang.Thread、C++11 的 std::thread 等等)都是对操作系统的线程(内核级线程)的一层封装,创建出来的每个线程与一个独立的 KSE 静态绑定,因此其调度完全由操作系统内核调度器去做,也就是说,一个进程里创建出来的多个线程每一个都绑定一个 KSE。

用户级线程模型

用户线程与内核线程 KSE 是多对一(N : 1)的映射模型,多个用户线程的一般从属于单个进程并且多线程的调度是由用户自己的线程库来完成,线程的创建、销毁以及多线程之间的协调等操作都是由用户自己的线程库来负责而无须借助系统调用来实现。一个进程中所有创建的线程都只和同一个 KSE 在运行时动态绑定,也就是说,操作系统只知道用户进程而对其中的线程是无感知的,内核的所有调度都是基于用户进程。这种实现方式相比内核级线程可以做的很轻量级,对系统资源的消耗会小很多,因此可以创建的线程数量与上下文切换所花费的代价也会小得多。但该模型有个原罪:并不能做到真正意义上的并发,假设在某个用户进程上的某个用户线程因为一个阻塞调用(比如 I/O 阻塞)而被 CPU 给中断(抢占式调度)了,那么该进程内的所有线程都被阻塞(因为单个用户进程内的线程自调度是没有 CPU 时钟中断的,从而没有轮转调度),整个进程被挂起。即便是多 CPU 的机器,也无济于事,因为在用户级线程模型下,一个 CPU 关联运行的是整个用户进程,进程内的子线程绑定到 CPU 执行是由用户进程调度的,内部线程对 CPU 是不可见的,此时可以理解为 CPU 的调度单位是用户进程。所以很多的协程库会把自己一些阻塞的操作重新封装为完全的非阻塞形式,然后在以前要阻塞的点上,主动让出自己,并通过某种方式通知或唤醒其他待执行的用户线程在该 KSE 上运行,从而避免了内核调度器由于 KSE 阻塞而做上下文切换,这样整个进程也不会被阻塞了。

两级线程模型

用户线程与内核 KSE 是多对多(N : M)的映射模型:首先,区别于用户级线程模型,两级线程模型中的一个进程可以与多个内核线程 KSE 关联,也就是说一个进程内的多个线程可以分别绑定一个自己的 KSE,这点和内核级线程模型相似;其次,又区别于内核级线程模型,它的进程里的线程并不与 KSE 唯一绑定,而是可以多个用户线程映射到同一个 KSE,当某个 KSE 因为其绑定的线程的阻塞操作被内核调度出 CPU 时,其关联的进程中其余用户线程可以重新与其他 KSE 绑定运行。即用户调度器实现用户线程到 KSE 的『调度』,内核调度器实现 KSE 到 CPU 上的『调度』

G-P-M 模型概述

在 Go 语言中,每一个 goroutine 是一个独立的执行单元,相较于每个 OS 线程固定分配 2M 内存的模式,goroutine 的栈采取了动态扩容方式, 初始时仅为2KB,随着任务执行按需增长,最大可达 1GB(64 位机器最大是 1G,32 位机器最大是 256M),且完全由 golang 自己的调度器 Go Scheduler 来调度。此外,GC 还会周期性地将不再使用的内存回收,收缩栈空间。 因此,Go 程序可以同时并发成千上万个 goroutine 是得益于它强劲的调度器和高效的内存模型。

调度算法

  • G: 表示 Goroutine,每个 Goroutine 对应一个 G 结构体,G 存储 Goroutine 的运行堆栈、状态以及任务函数,可重用。G 并非执行体,每个 G 需要绑定到 P 才能被调度执行。
  • P: Processor,表示逻辑处理器, 对 G 来说,P 相当于 CPU 核,G 只有绑定到 P(在 P 的 local runq 中)才能被调度。对 M 来说,P 提供了相关的执行环境(Context),如内存分配状态(mcache),任务队列(G)等,P 的数量决定了系统内最大可并行的 G 的数量(前提:物理 CPU 核数 >= P 的数量),P 的数量由用户设置的 GOMAXPROCS 决定,但是不论 GOMAXPROCS 设置为多大,P 的数量最大为 256。
  • M: Machine,OS 线程抽象,代表着真正执行计算的资源,在绑定有效的 P 后,进入 schedule 循环;而 schedule 循环的机制大致是从 Global 队列、P 的 Local 队列以及 wait 队列中获取 G,切换到 G 的执行栈上并执行 G 的函数,调用 goexit 做清理工作并回到 M,如此反复。M 并不保留 G 状态,这是 G 可以跨 M 调度的基础,M 的数量是不定的,由 Go Runtime 调整,为了防止创建过多 OS 线程导致系统调度不过来,目前默认最大限制为 10000 个。
  • 每个 P 维护一个 G 的本地队列;
  • 当一个 G 被创建出来,或者变为可执行状态时,就把他放到 P 的本地可执行队列中,如果满了则放入Global;
  • 当一个 G 在 M 里执行结束后,P 会从队列中把该 G 取出;如果此时 P 的队列为空,即没有其他 G 可以执行, M 就随机选择另外一个 P,从其可执行的 G 队列中取走一半。

调度过程

当通过 go 关键字创建一个新的 goroutine 的时候,它会优先被放入 P 的本地队列。为了运行 goroutine,M 需要持有(绑定)一个 P,接着 M 会启动一个 OS 线程,循环从 P 的本地队列里取出一个 goroutine 并执行。执行调度算法:当 M 执行完了当前 P 的 Local 队列里的所有 G 后,P 也不会就这么在那划水啥都不干,它会先尝试从 Global 队列寻找 G 来执行,如果 Global 队列为空,它会随机挑选另外一个 P,从它的队列里中拿走一半的 G 到自己的队列中执行。

阻塞

Go runtime 会在下面的 goroutine 被阻塞的情况下运行另外一个 goroutine:

  • blocking syscall (for example opening a file)
  • network input
  • channel operations
  • primitives in the sync package

这四种场景又可归类为两种类型:

用户态阻塞/唤醒

当 goroutine 因为 channel 操作阻塞时,对应的 G 会被放置到某个 wait 队列(如 channel 的 waitq),该 G 的状态由_Gruning 变为 _Gwaitting ,而 M 会跳过该 G 尝试获取并执行下一个 G,如果此时没有 runnable 的 G 供 M 运行,那么 M 将解绑 P,并进入 sleep 状态;当阻塞的 G 被另一端的 G2 唤醒时(比如 channel 的可读/写通知),G 被标记为 runnable,尝试加入 G2 所在 P 的 runnext,然后再是 P 的 Local 队列和 Global 队列。

系统调用阻塞

当 G 被阻塞在某个系统调用上时,此时 G 会阻塞在 _Gsyscall 状态,M 也处于 block on syscall 状态,此时的 M 可被抢占调度:执行该 G 的 M 会与 P 解绑,而 P 则尝试与其它空闲的 M 绑定,继续执行其它 G。如果没有其它空闲的 M,但 P 的 Local 队列中仍然有 G 需要执行,则创建一个新的 M;当系统调用完成后,G 会重新尝试获取一个空闲的 P 进入它的 Local 队列恢复执行,如果没有空闲的 P,G 会被标记为 runnable 加入到 Global 队列。


转载来源:https://juejin.cn/post/7257410102068215865

相关文章
|
存储 监控 Linux
Golang 语言的 goroutine 调度器模型 GPM
Golang 语言的 goroutine 调度器模型 GPM
107 0
|
5月前
|
存储 安全 测试技术
GoLang协程Goroutiney原理与GMP模型详解
本文详细介绍了Go语言中的Goroutine及其背后的GMP模型。Goroutine是Go语言中的一种轻量级线程,由Go运行时管理,支持高效的并发编程。文章讲解了Goroutine的创建、调度、上下文切换和栈管理等核心机制,并通过示例代码展示了如何使用Goroutine。GMP模型(Goroutine、Processor、Machine)是Go运行时调度Goroutine的基础,通过合理的调度策略,实现了高并发和高性能的程序执行。
356 30
|
5月前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
153 1
|
5月前
|
负载均衡 算法 Go
GoLang协程Goroutiney原理与GMP模型详解
【11月更文挑战第4天】Goroutine 是 Go 语言中的轻量级线程,由 Go 运行时管理,创建和销毁开销小,适合高并发场景。其调度采用非抢占式和协作式多任务处理结合的方式。GMP 模型包括 G(Goroutine)、M(系统线程)和 P(逻辑处理器),通过工作窃取算法实现负载均衡,确保高效利用系统资源。
103 3
|
11月前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第2天】Go语言的并发编程基于CSP模型,强调通过通信共享内存。核心概念是goroutines(轻量级线程)和channels(用于goroutines间安全数据传输)。常见问题包括数据竞争、死锁和goroutine管理。避免策略包括使用同步原语、复用channel和控制并发。示例展示了如何使用channel和`sync.WaitGroup`避免死锁。理解并发原则和正确应用CSP模型是编写高效安全并发程序的关键。
279 7
|
11月前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第1天】Go语言基于CSP理论,借助goroutines和channels实现独特的并发模型。Goroutine是轻量级线程,通过`go`关键字启动,而channels提供安全的通信机制。文章讨论了数据竞争、死锁和goroutine泄漏等问题及其避免方法,并提供了一个生产者消费者模型的代码示例。理解CSP和妥善处理并发问题对于编写高效、可靠的Go程序至关重要。
251 2
|
11月前
|
监控 编译器 Linux
golang面试:golang的GPM调度模型(七)
golang面试:golang的GPM调度模型(七)
92 1
|
Java Go C++
Golang 笔记(三):一种理解 Slice 的模型
Golang 笔记(三):一种理解 Slice 的模型
186 0
Golang 笔记(三):一种理解 Slice 的模型
|
存储 负载均衡 数据可视化
[典藏版]深入理解Golang协程调度GPM模型
<深入理解Golang协程调度器GPM模型>介绍了Golang中调度器的由来,以及如何演进到GPM模型的设计,其中包含一个Go协程在启动过程中如何运行和加载GPM模型的细节动作,也包括GPM模型的可视化编程和调试分析。最后形象介绍GPM模型的各个触发条件及运作的场景。
386 1
[典藏版]深入理解Golang协程调度GPM模型
|
存储 负载均衡 数据可视化
[典藏版]深入理解Golang协程调度GPM模型
《深入理解Golang协程调度器GPM模型》介绍了Golang中调度器的由来,以及如何演进到GPM模型的设计,其中包含一个Go协程在启动过程中如何运行和加载GPM模型的细节动作,也包括GPM模型的可视化编程和调试分析。最后形象介绍GPM模型的各个触发条件及运作的场景。
564 1
[典藏版]深入理解Golang协程调度GPM模型
下一篇
oss创建bucket