【计算机视觉+自动驾驶】二、多任务深度学习网络并联式、级联式构建详细讲解(图像解释 超详细必看)

简介: 【计算机视觉+自动驾驶】二、多任务深度学习网络并联式、级联式构建详细讲解(图像解释 超详细必看)

觉得有帮助麻烦点赞关注收藏~~~

一、多任务网络的主要分类

目前建立的多任务网络可以分为两种方法,一种为并联多任务网络结构,另一种为级联多任务网络结构,两种网络构建方式分别如下图所示

并联式

级联式

并联网络结构大多为共享基础网络而保留所有与任务相关的卷积层网络,这种方法可以实现任意两种或者多种相关任务之间的多任务网络构建,不需要考虑任务之间的结构关系,较为简单

级联网络结构为通过一个任务结果来影响下一个任务结果,此种方法需要考虑两种任务之间的转化关系,但该方法可以使任务之间共享更多的网络参数,还可以使各个任务相辅相成,提高各自任务的准确率

二、并行式网络

并联式多任务联合算法的检测任务和分割任务共享卷积特征,每个任务包含一个损失函数,多任务联合算法的整体损失函数定义为检测损失函数和分割损失函数的总和,在反向传播的梯度合并过程中,不同任务的损失所占权重都是平等的。

并联式网络损失函数的设计

并联式多任务联合算法的检测任务和分割任务共享卷积特征,每个任务包含一个损失函数,多任务联合算法的整体损失函数定义为检测损失函数和分割损失函数的总和。

三、级联式网络

1:网络结构

网络结构如下图,它直接将目标检测预测结果加入到分割任务当中,从而对分割任务进行优化,分割任务首先针对来自conv3的浅层特征,将深层特征的2倍上采样与中层特征融合,再与来自浅层预测结果的特征进行融合,之后进入一个卷积模块,该卷积模块的作用主要有两个:

1:学习分割任务与目标检测任务之间的关系

2:降低特征矩阵的维度 最后经过8倍上采样得到与图像尺寸大小一致的类别矩阵1248×384×2,其中2代表针对原图的每个像素点有两个类别,之后将检测结果框直接映射到原图上,得到针对原图的一个掩膜,即目标框内部与目标框上部为0而其他地方为1,用该掩膜与得到图像分割结果想卷积,对分割结构进行优化,最后掩膜为1的位置对应的像素点预测为置信度大的类别

2:级联式网络损失函数的设计

损失函数即为预测值与真实值之间的差距,差距越小,代表算法越能更好的进行预测,所以算法都会在保证损失函数最小值大于或等于0的情况下,通过优化使损失函数得到最小的参数,多元函数的方差函数与以极大似然为原理的交叉熵函数使求最优化时常用的两个办法,因为这两个函数一定大于0,且当预测值与实际值越接近时损失越小

(1) 预测框中心点损失,采用方差损失函数:

(2) 预测框宽和高的损失,采用方差损失函数:

(3) 预测框是否存在实际目标损失,采用交叉熵损失函数:

(4) 预测类别损失函数,采用交叉熵损失函数:

目标检测总损失为:

四、多任务深度学习网络测试结果

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 数据采集 算法
深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?
本文探讨了在深度学习和机器学习中针对非时间序列的回归任务的多种改进策略,包括数据预处理、数据集增强、特征选择、模型选择、模型正则化与泛化、优化器选择、学习率调整、超参数调优以及性能评估与模型解释,旨在提升模型的性能和可解释性。
45 1
深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?
|
21天前
|
机器学习/深度学习 数据采集 人工智能
《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
这篇文章详细介绍了如何使用线性回归算法实现波士顿房价预测任务,包括数据读取、形状变换、集划分、归一化处理、模型设计、前向计算以及损失函数的计算等步骤,并提供了相应的Python代码实现。
 《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
|
21天前
|
机器学习/深度学习 算法 前端开发
《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
使用Numpy实现梯度下降算法来构建和训练线性模型进行波士顿房价预测的过程,并提供了模型保存的方法,同时提出了几个关于梯度计算、参数更新和神经网络训练的作业题目。
 《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
|
10天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别在自动驾驶系统中的应用
【8月更文挑战第30天】 随着人工智能技术的飞速发展,深度学习已成为推动多个领域革新的核心动力。特别是在图像识别任务中,深度学习模型展现出了卓越的性能。本文将探讨一种基于卷积神经网络(CNN)的图像识别方法,并分析其在自动驾驶系统中的实际应用。我们首先回顾深度学习在图像处理方面的基础知识,随后详细介绍一个高效的CNN架构,并通过实验验证该架构在复杂环境下对车辆、行人及其他障碍物的检测和分类能力。最后,讨论了该方法在实际自动驾驶系统中面临的挑战及潜在的改进方向。
|
10天前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【8月更文挑战第30天】 随着人工智能的快速发展,特别是深度学习技术在图像处理和模式识别领域的突破进展,自动驾驶系统得以实现更为精准的环境感知与决策。本文深入探讨了基于深度学习的图像识别技术在自动驾驶系统中的应用,并分析了其对提高自动驾驶安全性和可靠性的重要性。通过综合运用卷积神经网络(CNN)、递归神经网络(RNN)等先进算法,我们能够使自动驾驶车辆更好地理解周围环境,从而进行有效的导航与避障。文章还指出了目前该领域面临的主要挑战及未来的发展方向。
|
23天前
|
机器学习/深度学习 人工智能 算法
【深度学习】python之人工智能应用篇——图像生成技术(二)
图像生成是计算机视觉和计算机图形学领域的一个重要研究方向,它指的是通过计算机算法和技术生成或合成图像的过程。随着深度学习、生成模型等技术的发展,图像生成领域取得了显著的进步,并在多个应用场景中发挥着重要作用。
32 9
|
19天前
|
机器学习/深度学习 API 计算机视觉
如何使用深度学习实现图像分类
深度学习在图像分类中扮演着核心角色,通过卷积神经网络(CNN)自动提取图像特征并分类。本文介绍深度学习原理及其实现流程,包括数据准备、构建CNN模型、训练与评估模型,并讨论如何在阿里云上部署模型及其实用场景。
|
27天前
|
机器学习/深度学习 传感器 自动驾驶
使用Python实现深度学习模型:智能车联网与自动驾驶
【8月更文挑战第14天】 使用Python实现深度学习模型:智能车联网与自动驾驶
43 10
|
23天前
|
机器学习/深度学习 人工智能 编解码
【神经网络】基于对抗神经网络的图像生成是如何实现的?
对抗神经网络,尤其是生成对抗网络(GAN),在图像生成领域扮演着重要角色。它们通过一个有趣的概念——对抗训练——来实现图像的生成。以下将深入探讨GAN是如何实现基于对抗神经网络的图像生成的
15 3
|
21天前
|
机器学习/深度学习 算法 数据处理
《零基础实践深度学习》波士顿房价预测任务1.3.3.4训练过程
这篇文章详细阐述了如何使用线性回归对波士顿房价进行预测,包括构建神经网络模型、数据处理、模型设计、训练过程、梯度下降法以及随机梯度下降法(SGD)的应用,并提供了完整的Python代码实现。
下一篇
DDNS