【计算机视觉+自动驾驶】二、多任务深度学习网络并联式、级联式构建详细讲解(图像解释 超详细必看)

简介: 【计算机视觉+自动驾驶】二、多任务深度学习网络并联式、级联式构建详细讲解(图像解释 超详细必看)

觉得有帮助麻烦点赞关注收藏~~~

一、多任务网络的主要分类

目前建立的多任务网络可以分为两种方法,一种为并联多任务网络结构,另一种为级联多任务网络结构,两种网络构建方式分别如下图所示

并联式

级联式

并联网络结构大多为共享基础网络而保留所有与任务相关的卷积层网络,这种方法可以实现任意两种或者多种相关任务之间的多任务网络构建,不需要考虑任务之间的结构关系,较为简单

级联网络结构为通过一个任务结果来影响下一个任务结果,此种方法需要考虑两种任务之间的转化关系,但该方法可以使任务之间共享更多的网络参数,还可以使各个任务相辅相成,提高各自任务的准确率

二、并行式网络

并联式多任务联合算法的检测任务和分割任务共享卷积特征,每个任务包含一个损失函数,多任务联合算法的整体损失函数定义为检测损失函数和分割损失函数的总和,在反向传播的梯度合并过程中,不同任务的损失所占权重都是平等的。

并联式网络损失函数的设计

并联式多任务联合算法的检测任务和分割任务共享卷积特征,每个任务包含一个损失函数,多任务联合算法的整体损失函数定义为检测损失函数和分割损失函数的总和。

三、级联式网络

1:网络结构

网络结构如下图,它直接将目标检测预测结果加入到分割任务当中,从而对分割任务进行优化,分割任务首先针对来自conv3的浅层特征,将深层特征的2倍上采样与中层特征融合,再与来自浅层预测结果的特征进行融合,之后进入一个卷积模块,该卷积模块的作用主要有两个:

1:学习分割任务与目标检测任务之间的关系

2:降低特征矩阵的维度 最后经过8倍上采样得到与图像尺寸大小一致的类别矩阵1248×384×2,其中2代表针对原图的每个像素点有两个类别,之后将检测结果框直接映射到原图上,得到针对原图的一个掩膜,即目标框内部与目标框上部为0而其他地方为1,用该掩膜与得到图像分割结果想卷积,对分割结构进行优化,最后掩膜为1的位置对应的像素点预测为置信度大的类别

2:级联式网络损失函数的设计

损失函数即为预测值与真实值之间的差距,差距越小,代表算法越能更好的进行预测,所以算法都会在保证损失函数最小值大于或等于0的情况下,通过优化使损失函数得到最小的参数,多元函数的方差函数与以极大似然为原理的交叉熵函数使求最优化时常用的两个办法,因为这两个函数一定大于0,且当预测值与实际值越接近时损失越小

(1) 预测框中心点损失,采用方差损失函数:

(2) 预测框宽和高的损失,采用方差损失函数:

(3) 预测框是否存在实际目标损失,采用交叉熵损失函数:

(4) 预测类别损失函数,采用交叉熵损失函数:

目标检测总损失为:

四、多任务深度学习网络测试结果

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
92 2
|
2月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶汽车中的应用####
【10月更文挑战第21天】 本文探讨了深度学习中的卷积神经网络(CNN)如何革新自动驾驶车辆的视觉感知能力,特别是在复杂多变的道路环境中实现高效准确的物体检测与分类。通过分析CNN架构设计、数据增强策略及实时处理优化等关键技术点,揭示了该技术在提升自动驾驶系统环境理解能力方面的潜力与挑战。 ####
87 0
|
15天前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
47 12
|
1月前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
109 1
|
2月前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
124 6
|
2月前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶中的应用与挑战####
本文探讨了深度学习技术在自动驾驶领域的应用现状、面临的主要挑战及未来发展趋势。通过分析卷积神经网络(CNN)和循环神经网络(RNN)等关键算法在环境感知、决策规划中的作用,结合特斯拉Autopilot和Waymo的实际案例,揭示了深度学习如何推动自动驾驶技术向更高层次发展。文章还讨论了数据质量、模型泛化能力、安全性及伦理道德等问题,为行业研究者和开发者提供了宝贵的参考。 ####
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
68 3
|
1月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术及其在自动驾驶中的应用####
本文深入探讨了深度学习驱动下的图像识别技术,特别是在自动驾驶领域的革新应用。不同于传统摘要的概述方式,本节将直接以“深度学习”与“图像识别”的技术融合为起点,简述其在提升自动驾驶系统环境感知能力方面的核心作用,随后快速过渡到自动驾驶的具体应用场景,强调这一技术组合如何成为推动自动驾驶从实验室走向市场的关键力量。 ####
73 0
|
2月前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶汽车中的应用##
本文深入探讨了深度学习技术在自动驾驶汽车图像识别领域的应用,通过分析卷积神经网络(CNN)、循环神经网络(RNN)等关键技术,阐述了如何利用这些先进的算法来提升自动驾驶系统对环境感知的准确性和效率。文章还讨论了当前面临的挑战,如数据多样性、模型泛化能力以及实时处理速度等问题,并展望了未来发展趋势,包括端到端学习框架、跨模态融合及强化学习方法的应用前景。 --- ##
76 0
|
2月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶领域的应用与挑战####
本文旨在探讨深度学习驱动下的图像识别技术于自动驾驶汽车中的应用现状,重点分析其在环境感知、障碍物检测及路径规划等方面的贡献,并深入剖析该技术面临的数据依赖性、算法泛化能力、实时处理需求等核心挑战。通过综述当前主流算法框架与最新研究成果,本文为推动自动驾驶技术的稳健发展提供理论参考与实践指导。 ####
71 0

热门文章

最新文章