Python pickle 二进制序列化和反序列化 - 数据持久化

简介: Python pickle 二进制序列化和反序列化 - 数据持久化

模块 pickle 实现了对一个 Python 对象结构的二进制序列化和反序列化。 "pickling" 是将 Python 对象及其所拥有的层次结构转化为一个字节流的过程,而 "unpickling" 是相反的操作,会将(来自一个 binary file 或者 bytes-like object 的)字节流转化回一个对象层次结构。 pickling(和 unpickling)也被称为“序列化”, “编组” 1 或者 “平面化”。而为了避免混乱,此处采用术语 “封存 (pickling)” 和 “解封 (unpickling)”。

pickle 模块 并不安全。 你只应该对你信任的数据进行 unpickle 操作。

构建恶意的 pickle 数据来 在 解封时执行任意代码 是可能的。 绝对不要对不信任来源的数据和可能被篡改过的数据进行解封。

请考虑使用 hmac 来对数据进行签名,确保数据没有被篡改。

在你处理不信任数据时,更安全的序列化格式如 json 可能更为适合。

与 json 模块的比较

在 pickle 协议和 JSON (JavaScript Object Notation) 之间有着本质上的差异:

  • JSON 是一个文本序列化格式(它输出 unicode 文本,尽管在大多数时候它会接着以 utf-8 编码),而 pickle 是一个二进制序列化格式;
  • JSON 是我们可以直观阅读的,而 pickle 不是;
  • JSON是可互操作的,在Python系统之外广泛使用,而pickle则是Python专用的;
  • 默认情况下,JSON 只能表示 Python 内置类型的子集,不能表示自定义的类;但 pickle 可以表示大量的 Python 数据类型(可以合理使用 Python 的对象内省功能自动地表示大多数类型,复杂情况可以通过实现 specific object APIs 来解决)。
  • 不像pickle,对一个不信任的JSON进行反序列化的操作本身不会造成任意代码执行漏洞。

Pickle的基本用法

序列化(Pickling)

要将Python对象序列化为二进制数据,可以使用pickle.dump()函数。以下是一个简单的示例,将一个Python列表保存到文件中:

import pickle
data = [1, 2, 3, 4, 5]
# 打开一个文件以写入二进制数据
with open('data/data.pkl', 'wb') as file:
    pickle.dump(data, file)

在上述代码中,使用pickle.dump()函数将data列表序列化为二进制数据,并将其保存到名为data.pkl的文件中。参数'wb'表示以二进制写入模式打开文件。

反序列化(Unpickling)

要从文件中加载并反序列化二进制数据,可以使用pickle.load()函数。以下是加载data.pkl文件并还原Python对象的示例:

import pickle
# 打开文件以读取二进制数据
with open('data/data.pkl', 'rb') as file:
    loaded_data = pickle.load(file)
print("反序列化 %s" % loaded_data)

在上述代码中,使用pickle.load()函数从data.pkl文件中加载数据,并将其还原为Python对象。

Pickle的工作原理

pickle模块的工作原理涉及到将Python对象转换为一种可序列化的中间格式,然后再将该中间格式序列化为二进制数据。这个中间格式是一个自包含的表示对象的字典,其中包含了对象的数据和其类型信息。

当使用pickle.dump()序列化对象时,pickle 模块首先创建一个包含对象数据和类型信息的中间字典。然后,它将该字典转换为二进制数据。反序列化时,pickle模块将二进制数据还原为中间字典,然后再从字典中还原Python对象。

这种方法使pickle模块非常灵活,因为它可以序列化几乎所有Python对象,包括自定义对象,只要它们可以在中间字典中表示。

Pickle的适用场景

pickle模块在以下情况下非常有用:

  • 数据持久化:你可以使用pickle将Python对象保存到文件中,以便稍后读取。这对于保存模型、配置文件、数据缓存等非常有用。
  • 数据传输:你可以使用pickle将Python对象序列化并通过网络传输,以便不同的Python程序之间共享数据。
  • 对象复制:你可以使用pickle将Python对象进行深拷贝,以便创建对象的独立副本,而不是引用原始对象。
  • 测试和调试:pickle也用于创建模拟数据,以便进行测试和调试。

Pickle的注意事项

尽管pickle非常方便,但在使用它时需要注意一些事项:

  • 安全性:反序列化数据时要小心,因为pickle可以执行任意代码。不要从不受信任的来源加载pickle数据,以免遭受安全风险。
  • 版本兼容性:在不同版本的Python之间,pickle数据的兼容性可能会有问题。因此,确保在不同版本之间测试并验证pickle数据的兼容性。
  • 自定义对象:一些自定义对象的序列化和反序列化可能会受到限制,因此需要额外的配置。你可能需要实现特定的__reduce__方法来控制对象的序列化行为。

示例代码

以下是一个示例代码,演示如何使用pickle模块来序列化和反序列化一个自定义Python对象:

import pickle
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __str__(self):
        return f"Person(name='{self.name}', age={self.age})"
# 创建一个自定义对象
person = Person("Alice", 30)
# 序列化并保存到文件
with open('data/person.pkl', 'wb') as file:
    pickle.dump(person, file)
# 从文件中加载并反序列化
with open('data/person.pkl', 'rb') as file:
    loaded_person = pickle.load(file)
print(loaded_person)  # 输出: Person(name='Alice', age=30)

在上述代码中,我们首先定义了一个自定义类Person,然后创建了一个Person对象。我们使用pickle将该对象序列化为二进制数据,然后再从二进制数据中反序列化还原对象。

执行恶意代码

执行pickle对象中的恶意代码是非常危险的,因为它可能会导致数据丢失或系统崩溃。因此,在使用pickle模块时应该非常小心,并确保只序列化和反序列化来自可信来源的数据。以下是一个示例,演示了如何使用pickle模块执行任意代码:

import pickle
# 定义一个恶意函数
malicious_func = """
# import os
# os.system('rm -rf /')
with open('example.txt', 'w') as file:
    file.write('Hello, World!')
"""
# 生成将恶意代码文件
with open('data/malicious.pkl', 'wb') as file:
    pickle.dump(malicious_func, file)
# 从文件中加载并反序列化 -- 确保只反序列化来自可信来源的数据
with open('data/malicious.pkl', 'rb') as file:
    loaded_person = pickle.load(file)
# 执行pickle对象中的恶意函数
exec(loaded_person)
目录
相关文章
|
3月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
3月前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第22天】在Java的世界里,对象序列化和反序列化是数据持久化和网络传输的关键技术。本文将带你了解如何在Java中实现对象的序列化与反序列化,并探讨其背后的原理。通过实际代码示例,我们将一步步展示如何将复杂数据结构转换为字节流,以及如何将这些字节流还原为Java对象。文章还将讨论在使用序列化时应注意的安全性问题,以确保你的应用程序既高效又安全。
|
4月前
|
存储 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第9天】在Java的世界里,对象序列化是连接数据持久化与网络通信的桥梁。本文将深入探讨Java对象序列化的机制、实践方法及反序列化过程,通过代码示例揭示其背后的原理。从基础概念到高级应用,我们将一步步揭开序列化技术的神秘面纱,让读者能够掌握这一强大工具,以应对数据存储和传输的挑战。
|
4月前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第3天】在Java编程的世界里,对象序列化与反序列化是实现数据持久化和网络传输的关键技术。本文将深入探讨Java序列化的原理、应用场景以及如何通过代码示例实现对象的序列化与反序列化过程。从基础概念到实践操作,我们将一步步揭示这一技术的魅力所在。
|
3月前
|
存储 缓存 NoSQL
一篇搞懂!Java对象序列化与反序列化的底层逻辑
本文介绍了Java中的序列化与反序列化,包括基本概念、应用场景、实现方式及注意事项。序列化是将对象转换为字节流,便于存储和传输;反序列化则是将字节流还原为对象。文中详细讲解了实现序列化的步骤,以及常见的反序列化失败原因和最佳实践。通过实例和代码示例,帮助读者更好地理解和应用这一重要技术。
97 0
|
5月前
|
JSON 安全 编译器
扩展类实例的序列化和反序列化
扩展类实例的序列化和反序列化
58 1
|
5月前
|
存储 XML JSON
用示例说明序列化和反序列化
用示例说明序列化和反序列化
42 1
|
5月前
|
JSON 数据格式
序列化 json和pickle
序列化 json和pickle
|
5月前
|
XML Dubbo Java
分布式-序列化,反序列化
分布式-序列化,反序列化
|
9月前
|
存储 JSON JavaScript
Python中的JSON与Pickle模块:数据序列化和反序列化的利器
在Python编程中,数据的序列化和反序列化是经常遇到的操作。序列化是将数据结构或对象状态转换为可以存储或传输的格式的过程,而反序列化则是这个过程的逆操作,即将序列化的数据重新转换回原来的数据结构或对象状态。Python中的JSON和Pickle模块就是实现数据序列化和反序列化的强大工具。

热门文章

最新文章