Go语言中json序列化的一个小坑,建议多留意一下

简介: 在Go语言开发中,JSON因其简洁和广泛的兼容性而常用于数据交换,但其在处理数字类型时存在精度问题。本文探讨了JSON序列化的一些局限性,并介绍了两种替代方案:Go特有的gob二进制协议,以及msgpack,两者都能有效解决类型保持和性能优化的问题。

在 Go 语言开发中,JSON(JavaScript Object Notation)因其简洁和广泛的兼容性,通常被用作数据交换的主要序列化格式。然而,当你深入使用 JSON 时,可能会发现它并不总是最佳选择

本文将探讨 JSON 序列化的一些局限性,也算是一个小坑吧。并给出一些常用的解决方案。

JSON 序列化的潜在问题

我们先来看一个使用 JSON 进行序列化和反序列化的示例:

package json_demo

import (
    "encoding/json"
    "fmt"
)

func JsonEnDeDemo() {
   
    d1 := make(map[string]interface{
   })
    d2 := make(map[string]interface{
   })

    var (
        age    int     = 18
        name   string  = "Alex"
        height float32 = 1.75
    )

    d1["name"] = name
    d1["age"] = age
    d1["height"] = height

    ret, err := json.Marshal(d1)
    if err != nil {
   
        fmt.Printf("json.Marshal failed: %v\n", err)
        return
    }
    // json.Marshal: {"age":18,"height":1.75,"name":"Alex"}
    fmt.Printf("json.Marshal: %s\n", string(ret))

    err = json.Unmarshal(ret, &d2)
    if err != nil {
   
        fmt.Printf("json.Unmarshal failed: %v\n", err)
        return
    }
    // json.Unmarshal: map[age:18 height:1.75 name:Alex]
    fmt.Printf("json.Unmarshal: %v\n", d2)

    // 这里我们可以发现一个问题:Go 语言中的 json 包在序列化 interface{} 类型时,会将数字类型(整型、浮点型等)都序列化为 float64 类型
    for k, v := range d2 {
   
        // key: age, value: 18, type:float64
        // key: height, value: 1.75, type:float64
        // key: name, value: Alex, type:string
        fmt.Printf("key: %s, value: %v, type:%T \n", k, v, v)
    }
}

这段代码展示了如何将一个包含 nameageheight 的 Go map 数据结构序列化为 JSON 字符串,然后再反序列化回来。看似一切正常,但请注意反序列化后的数据类型变化。

运行代码后的输出可能会让你感到意外:

json.Marshal: {"age":18,"height":1.75,"name":"Alex"}
json.Unmarshal: map[age:18 height:1.75 name:Alex]
key: age, value: 18, type:float64 
key: height, value: 1.75, type:float64 
key: name, value: Alex, type:string

问题:我们发现,尽管原始数据中 ageint 类型,heightfloat32 类型,但经过 JSON 反序列化后,它们全都变成了 float64 类型。

Go 语言中的 encoding/json 包会将所有数字类型(包括整型、浮点型等)转换为 float64 ,那么,有没有方式可以不让类型丢失呢?还真有!

gob 二进制协议,高效且保留类型的 Go 专用序列化

为了避免 JSON 的这一局限性,我们可以使用 Go 语言特有的 GOB 序列化方式。GOB 不仅可以高效地序列化数据,还能够保留原始数据类型。

以下是使用 GOB 进行序列化和反序列化的示例:

package json_demo

import (
    "bytes"
    "encoding/gob"
    "fmt"
)

func GobEnDeDemo() {
   
    d1 := make(map[string]interface{
   })
    d2 := make(map[string]interface{
   })

    var (
        age    int     = 18
        name   string  = "Alex"
        height float32 = 1.75
    )

    d1["name"] = name
    d1["age"] = age
    d1["height"] = height

    // encode
    buf := new(bytes.Buffer)
    enc := gob.NewEncoder(buf)
    err := enc.Encode(d1)
    if err != nil {
   
        fmt.Printf("gob.Encode failed: %v\n", err)
        return
    }
    b := buf.Bytes()
    // gob.Encode:  [13 127 4 1 2 255 128 0 1 12 1 16 0 0 57 255 128 0 3 4 110 97 109 101 6 115 116 114 105 110 103 12 6 0 4 65 108 101 120 3 97 103 101 3 105 110 116 4 2 0 36 6 104 101 105 103 104 116 7 102 108 111 97 116 51 50 8 4 0 254 252 63]
    fmt.Println("gob.Encode: ", b)

    // decode
    dec := gob.NewDecoder(bytes.NewBuffer(b))
    err = dec.Decode(&d2)
    if err != nil {
   
        fmt.Printf("gob.Decode failed: %v\n", err)
        return
    }
    // gob.Decode: map[age:18 height:1.75 name:Alex]
    fmt.Printf("gob.Decode: %v\n", d2)

    for k, v := range d2 {
   
        // key: name, value: Alex, type:string
        // key: age, value: 18, type:int
        // key: height, value: 1.75, type:float32
        fmt.Printf("key: %s, value: %v, type:%T \n", k, v, v)
    }
}

从上面的代码中可以看到,GOB 序列化不仅保留了 ageint 类型和 heightfloat32 类型,还能高效地进行数据编码。这使得 GOB 成为在 Go 程序内部传递数据的理想选择。

第三方包 msgpack

msgpack 是一种高效的二进制序列化格式,它允许你在多种语言(如JSON)之间交换数据。但它更快更小。

首先需要先下载这个包

go get -v github.com/vmihailenco/msgpack/v5

来看一个使用 msgpack 的示例:

package json_demo

import (
    "fmt"
    "github.com/vmihailenco/msgpack/v5"
)

func MsgpackEnDeDemo() {
   
    // msgpack 序列化示例
    d1 := make(map[string]interface{
   })
    d2 := make(map[string]interface{
   })

    var (
        age    int     = 18
        name   string  = "Alex"
        height float32 = 1.75
    )

    d1["name"] = name
    d1["age"] = age
    d1["height"] = height

    // encode
    b, err := msgpack.Marshal(d1)
    if err != nil {
   
        fmt.Printf("msgpack.Marshal failed: %v\n", err)
        return
    }
    // msgpack.Marshal:  [131 164 110 97 109 101 164 65 108 101 120 163 97 103 101 18 166 104 101 105 103 104 116 202 63 224 0 0]
    fmt.Println("msgpack.Marshal: ", b)

    // decode
    err = msgpack.Unmarshal(b, &d2)
    if err != nil {
   
        fmt.Printf("msgpack.Unmarshal failed: %v\n", err)
        return
    }
    // msgpack.Unmarshal: map[age:18 height:1.75 name:Alex]
    fmt.Printf("msgpack.Unmarshal: %v\n", d2)

    for k, v := range d2 {
   
        // key: age, value: 18, type:int8
        // key: height, value: 1.75, type:float32
        // key: name, value: Alex, type:string
        fmt.Printf("key: %s, value: %v, type:%T \n", k, v, v)
    }

}

msgpack的优势

  • 高效紧凑:数据体积比 JSON 更小,序列化和反序列化速度更快。
  • 类型保持:与 GOB 类似,msgpack 也能保持原始数据类型。

总结

  • json:虽然广泛使用且易于阅读,但在处理数字类型时有潜在的精度问题。
  • gob:适用于 Go 语言程序内部的数据传输,保留类型且性能优异,但仅适用于 Go。
  • msgpack:在需要高效、紧凑的跨语言数据交换时非常有用,同时还能保留数据类型。

通过这三种序列化方式的比较,希望你能够根据实际需求选择合适的工具。在需要保证类型和性能的 Go 程序中,gob 和 msgpack 可能是比 json 更好的选择,不过,你也完全可以使用 json 包来反序列化,只不过取值的时候就需要通过类型断言来得到之前的类型。

相关文章
|
15天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
16天前
|
编译器 Go
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
20天前
|
存储 Go
Go 语言入门指南:切片
Golang中的切片(Slice)是基于数组的动态序列,支持变长操作。它由指针、长度和容量三部分组成,底层引用一个连续的数组片段。切片提供灵活的增减元素功能,语法形式为`[]T`,其中T为元素类型。相比固定长度的数组,切片更常用,允许动态调整大小,并且多个切片可以共享同一底层数组。通过内置的`make`函数可创建指定长度和容量的切片。需要注意的是,切片不能直接比较,只能与`nil`比较,且空切片的长度为0。
Go 语言入门指南:切片
|
19天前
|
开发框架 前端开发 Go
eino — 基于go语言的大模型应用开发框架(二)
本文介绍了如何使用Eino框架实现一个基本的LLM(大语言模型)应用。Eino中的`ChatModel`接口提供了与不同大模型服务(如OpenAI、Ollama等)交互的统一方式,支持生成完整响应、流式响应和绑定工具等功能。`Generate`方法用于生成完整的模型响应,`Stream`方法以流式方式返回结果,`BindTools`方法为模型绑定工具。此外,还介绍了通过`Option`模式配置模型参数及模板功能,支持基于前端和用户自定义的角色及Prompt。目前主要聚焦于`ChatModel`的`Generate`方法,后续将继续深入学习。
169 7
|
16天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
29 3
|
16天前
|
存储 缓存 安全
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。
|
20天前
|
存储 开发框架 Devops
eino — 基于go语言的大模型应用开发框架(一)
Eino 是一个受开源社区优秀LLM应用开发框架(如LangChain和LlamaIndex)启发的Go语言框架,强调简洁性、可扩展性和可靠性。它提供了易于复用的组件、强大的编排框架、简洁明了的API、最佳实践集合及实用的DevOps工具,支持快速构建和部署LLM应用。Eino不仅兼容多种模型库(如OpenAI、Ollama、Ark),还提供详细的官方文档和活跃的社区支持,便于开发者上手使用。
127 8
|
20天前
|
存储 算法 Go
Go语言实战:错误处理和panic_recover之自定义错误类型
本文深入探讨了Go语言中的错误处理和panic/recover机制,涵盖错误处理的基本概念、自定义错误类型的定义、panic和recover的工作原理及应用场景。通过具体代码示例介绍了如何定义自定义错误类型、检查和处理错误值,并使用panic和recover处理运行时错误。文章还讨论了错误处理在实际开发中的应用,如网络编程、文件操作和并发编程,并推荐了一些学习资源。最后展望了未来Go语言在错误处理方面的优化方向。
|
17天前
|
SQL 安全 Java
阿里双十一背后的Go语言实践:百万QPS网关的设计与实现
解析阿里核心网关如何利用Go协程池、RingBuffer、零拷贝技术支撑亿级流量。 重点分享: ① 如何用gRPC拦截器实现熔断限流; ② Sync.Map在高并发读写中的取舍。
|
18天前
|
存储 算法 安全
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
27 0