Go语言中json序列化的一个小坑,建议多留意一下

简介: 在Go语言开发中,JSON因其简洁和广泛的兼容性而常用于数据交换,但其在处理数字类型时存在精度问题。本文探讨了JSON序列化的一些局限性,并介绍了两种替代方案:Go特有的gob二进制协议,以及msgpack,两者都能有效解决类型保持和性能优化的问题。

在 Go 语言开发中,JSON(JavaScript Object Notation)因其简洁和广泛的兼容性,通常被用作数据交换的主要序列化格式。然而,当你深入使用 JSON 时,可能会发现它并不总是最佳选择

本文将探讨 JSON 序列化的一些局限性,也算是一个小坑吧。并给出一些常用的解决方案。

JSON 序列化的潜在问题

我们先来看一个使用 JSON 进行序列化和反序列化的示例:

package json_demo

import (
    "encoding/json"
    "fmt"
)

func JsonEnDeDemo() {
   
    d1 := make(map[string]interface{
   })
    d2 := make(map[string]interface{
   })

    var (
        age    int     = 18
        name   string  = "Alex"
        height float32 = 1.75
    )

    d1["name"] = name
    d1["age"] = age
    d1["height"] = height

    ret, err := json.Marshal(d1)
    if err != nil {
   
        fmt.Printf("json.Marshal failed: %v\n", err)
        return
    }
    // json.Marshal: {"age":18,"height":1.75,"name":"Alex"}
    fmt.Printf("json.Marshal: %s\n", string(ret))

    err = json.Unmarshal(ret, &d2)
    if err != nil {
   
        fmt.Printf("json.Unmarshal failed: %v\n", err)
        return
    }
    // json.Unmarshal: map[age:18 height:1.75 name:Alex]
    fmt.Printf("json.Unmarshal: %v\n", d2)

    // 这里我们可以发现一个问题:Go 语言中的 json 包在序列化 interface{} 类型时,会将数字类型(整型、浮点型等)都序列化为 float64 类型
    for k, v := range d2 {
   
        // key: age, value: 18, type:float64
        // key: height, value: 1.75, type:float64
        // key: name, value: Alex, type:string
        fmt.Printf("key: %s, value: %v, type:%T \n", k, v, v)
    }
}

这段代码展示了如何将一个包含 nameageheight 的 Go map 数据结构序列化为 JSON 字符串,然后再反序列化回来。看似一切正常,但请注意反序列化后的数据类型变化。

运行代码后的输出可能会让你感到意外:

json.Marshal: {"age":18,"height":1.75,"name":"Alex"}
json.Unmarshal: map[age:18 height:1.75 name:Alex]
key: age, value: 18, type:float64 
key: height, value: 1.75, type:float64 
key: name, value: Alex, type:string

问题:我们发现,尽管原始数据中 ageint 类型,heightfloat32 类型,但经过 JSON 反序列化后,它们全都变成了 float64 类型。

Go 语言中的 encoding/json 包会将所有数字类型(包括整型、浮点型等)转换为 float64 ,那么,有没有方式可以不让类型丢失呢?还真有!

gob 二进制协议,高效且保留类型的 Go 专用序列化

为了避免 JSON 的这一局限性,我们可以使用 Go 语言特有的 GOB 序列化方式。GOB 不仅可以高效地序列化数据,还能够保留原始数据类型。

以下是使用 GOB 进行序列化和反序列化的示例:

package json_demo

import (
    "bytes"
    "encoding/gob"
    "fmt"
)

func GobEnDeDemo() {
   
    d1 := make(map[string]interface{
   })
    d2 := make(map[string]interface{
   })

    var (
        age    int     = 18
        name   string  = "Alex"
        height float32 = 1.75
    )

    d1["name"] = name
    d1["age"] = age
    d1["height"] = height

    // encode
    buf := new(bytes.Buffer)
    enc := gob.NewEncoder(buf)
    err := enc.Encode(d1)
    if err != nil {
   
        fmt.Printf("gob.Encode failed: %v\n", err)
        return
    }
    b := buf.Bytes()
    // gob.Encode:  [13 127 4 1 2 255 128 0 1 12 1 16 0 0 57 255 128 0 3 4 110 97 109 101 6 115 116 114 105 110 103 12 6 0 4 65 108 101 120 3 97 103 101 3 105 110 116 4 2 0 36 6 104 101 105 103 104 116 7 102 108 111 97 116 51 50 8 4 0 254 252 63]
    fmt.Println("gob.Encode: ", b)

    // decode
    dec := gob.NewDecoder(bytes.NewBuffer(b))
    err = dec.Decode(&d2)
    if err != nil {
   
        fmt.Printf("gob.Decode failed: %v\n", err)
        return
    }
    // gob.Decode: map[age:18 height:1.75 name:Alex]
    fmt.Printf("gob.Decode: %v\n", d2)

    for k, v := range d2 {
   
        // key: name, value: Alex, type:string
        // key: age, value: 18, type:int
        // key: height, value: 1.75, type:float32
        fmt.Printf("key: %s, value: %v, type:%T \n", k, v, v)
    }
}

从上面的代码中可以看到,GOB 序列化不仅保留了 ageint 类型和 heightfloat32 类型,还能高效地进行数据编码。这使得 GOB 成为在 Go 程序内部传递数据的理想选择。

第三方包 msgpack

msgpack 是一种高效的二进制序列化格式,它允许你在多种语言(如JSON)之间交换数据。但它更快更小。

首先需要先下载这个包

go get -v github.com/vmihailenco/msgpack/v5

来看一个使用 msgpack 的示例:

package json_demo

import (
    "fmt"
    "github.com/vmihailenco/msgpack/v5"
)

func MsgpackEnDeDemo() {
   
    // msgpack 序列化示例
    d1 := make(map[string]interface{
   })
    d2 := make(map[string]interface{
   })

    var (
        age    int     = 18
        name   string  = "Alex"
        height float32 = 1.75
    )

    d1["name"] = name
    d1["age"] = age
    d1["height"] = height

    // encode
    b, err := msgpack.Marshal(d1)
    if err != nil {
   
        fmt.Printf("msgpack.Marshal failed: %v\n", err)
        return
    }
    // msgpack.Marshal:  [131 164 110 97 109 101 164 65 108 101 120 163 97 103 101 18 166 104 101 105 103 104 116 202 63 224 0 0]
    fmt.Println("msgpack.Marshal: ", b)

    // decode
    err = msgpack.Unmarshal(b, &d2)
    if err != nil {
   
        fmt.Printf("msgpack.Unmarshal failed: %v\n", err)
        return
    }
    // msgpack.Unmarshal: map[age:18 height:1.75 name:Alex]
    fmt.Printf("msgpack.Unmarshal: %v\n", d2)

    for k, v := range d2 {
   
        // key: age, value: 18, type:int8
        // key: height, value: 1.75, type:float32
        // key: name, value: Alex, type:string
        fmt.Printf("key: %s, value: %v, type:%T \n", k, v, v)
    }

}

msgpack的优势

  • 高效紧凑:数据体积比 JSON 更小,序列化和反序列化速度更快。
  • 类型保持:与 GOB 类似,msgpack 也能保持原始数据类型。

总结

  • json:虽然广泛使用且易于阅读,但在处理数字类型时有潜在的精度问题。
  • gob:适用于 Go 语言程序内部的数据传输,保留类型且性能优异,但仅适用于 Go。
  • msgpack:在需要高效、紧凑的跨语言数据交换时非常有用,同时还能保留数据类型。

通过这三种序列化方式的比较,希望你能够根据实际需求选择合适的工具。在需要保证类型和性能的 Go 程序中,gob 和 msgpack 可能是比 json 更好的选择,不过,你也完全可以使用 json 包来反序列化,只不过取值的时候就需要通过类型断言来得到之前的类型。

相关文章
|
2月前
|
JSON 人工智能 Go
在Golang中序列化JSON字符串的教程
在Golang中,使用`json.Marshal()`可将数据结构序列化为JSON格式。若直接对JSON字符串进行序列化,会因转义字符导致错误。解决方案包括使用`[]byte`或`json.RawMessage()`来避免双引号被转义,从而正确实现JSON的序列化与反序列化。
113 7
|
1月前
|
数据采集 Go API
Go语言实战案例:多协程并发下载网页内容
本文是《Go语言100个实战案例 · 网络与并发篇》第6篇,讲解如何使用 Goroutine 和 Channel 实现多协程并发抓取网页内容,提升网络请求效率。通过实战掌握高并发编程技巧,构建爬虫、内容聚合器等工具,涵盖 WaitGroup、超时控制、错误处理等核心知识点。
|
1月前
|
数据采集 JSON Go
Go语言实战案例:实现HTTP客户端请求并解析响应
本文是 Go 网络与并发实战系列的第 2 篇,详细介绍如何使用 Go 构建 HTTP 客户端,涵盖请求发送、响应解析、错误处理、Header 与 Body 提取等流程,并通过实战代码演示如何并发请求多个 URL,适合希望掌握 Go 网络编程基础的开发者。
|
2月前
|
JSON 前端开发 Go
Go语言实战:创建一个简单的 HTTP 服务器
本篇是《Go语言101实战》系列之一,讲解如何使用Go构建基础HTTP服务器。涵盖Go语言并发优势、HTTP服务搭建、路由处理、日志记录及测试方法,助你掌握高性能Web服务开发核心技能。
|
2月前
|
Go
如何在Go语言的HTTP请求中设置使用代理服务器
当使用特定的代理时,在某些情况下可能需要认证信息,认证信息可以在代理URL中提供,格式通常是:
198 0
|
3月前
|
JSON 编解码 API
Go语言网络编程:使用 net/http 构建 RESTful API
本章介绍如何使用 Go 语言的 `net/http` 标准库构建 RESTful API。内容涵盖 RESTful API 的基本概念及规范,包括 GET、POST、PUT 和 DELETE 方法的实现。通过定义用户数据结构和模拟数据库,逐步实现获取用户列表、创建用户、更新用户、删除用户的 HTTP 路由处理函数。同时提供辅助函数用于路径参数解析,并展示如何设置路由器启动服务。最后通过 curl 或 Postman 测试接口功能。章节总结了路由分发、JSON 编解码、方法区分、并发安全管理和路径参数解析等关键点,为更复杂需求推荐第三方框架如 Gin、Echo 和 Chi。
|
4月前
|
分布式计算 Go C++
初探Go语言RPC编程手法
总的来说,Go语言的RPC编程是一种强大的工具,让分布式计算变得简单如同本地计算。如果你还没有试过,不妨挑战一下这个新的编程领域,你可能会发现新的世界。
104 10
|
4月前
|
JSON JavaScript 前端开发
Go语言JSON 序列化与反序列化 -《Go语言实战指南》
本文介绍了 Go 语言中使用 `encoding/json` 包实现 JSON 与数据结构之间的转换。内容涵盖序列化(`Marshal`)和反序列化(`Unmarshal`),包括基本示例、结构体字段标签的使用、控制字段行为的标签(如 `omitempty` 和 `-`)、处理 `map` 和切片、嵌套结构体序列化、反序列化未知结构(使用 `map[string]interface{}`)以及 JSON 数组的解析。最后通过表格总结了序列化与反序列化的方法及类型要求,帮助开发者快速掌握 JSON 数据处理技巧。
|
7月前
|
编译器 Go
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
7月前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。