langchain 简介

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: langchain 简介

LangChain 是一个用于语言模型和应用程序开发的框架,它提供了一系列工具和组件,

帮助开发者更轻松地构建基于大型语言模型(LLMs,如 OpenAI 的 GPT 系列)的应用程序。

LangChain 的目标是降低构建复杂语言应用程序的难度,通过提供一个模块化的框架,使得开发者能够快速集成和定制语言模型。

LangChain 可以很方便地连接大语言模型和各种应用。

主要特性

以下是 LangChain 的主要特性:

  • 模块化设计:LangChain 提供了一系列模块,包括模型、消息、角色、API 等,开发者可以根据自己的需求选择合适的模块进行组合。
  • 多种语言模型支持:LangChain 支持多种语言模型,包括 OpenAI 的 GPT 系列、清言的 GLM 系列等。
  • 链式调用:开发者可以创建 “链”(chains),这些链是一系列可以顺序执行的语言模型调用和其他操作,用于构建复杂的交互式应用程序。
  • 数据集成:LangChain 提供了与多种数据源集成的能力,如文件、数据库、搜索引擎等,使得语言模型能够访问和利用这些数据。
  • 可定制性:开发者可以根据特定任务对语言模型的行为进行微调,包括设置提示(prompts)、添加额外的上下文信息等。

为什么需要 LangChain?

大模型的智能效果令人振奋,可是当开发人员试图将大模型这颗“聪明脑”放入应用程序时,却发现了前所未有的挑战。

  • prompt 的结构如何标准化?(PromptTemplate
  • 如果我想中途随时切换大模型,怎样简单方便地操作?
  • LLM 的输出是非结构化的,它如何与结构化的程序接口相互交互?
  • 预训练模型的知识落后,如何让它知道最新的信息?
  • 如何让这颗大脑拥有记忆?(Memory
  • 如何给这颗 “聪明脑” 装上 “五官”,让它能够感知环境输入?
  • 怎样给这颗 “聪明脑” 装上 “手” 和 “脚”,让它帮我执行具体的任务?(Agent

LangChain 尝试解决的,就是这些问题。 LangChain 框架背后的核心思想是将自然语言处理序列分解为各个部分,允许开发人员根据自己的需要高效地定制工作流程

LangChain 的核心模块

Langchain 有6大核心模块:

  • Models:模型,是各种类型的模型和模型集成。
  • Prompts:提示,包括提示管理、提示优化和提示序列化。
  • Memory:记忆,用来保存和模型交互时的上下文状态。
  • Indexes:索引,用来结构化文档,以便和模型交互。包括文档加载程序、向量存储器、文本分割器和检索器等。
  • Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止。
  • Chains:链,一系列对各种组件的调用。

LangChain 通常被用作「粘合剂」,将构建 LLM 应用所需的各个模块连接在一起。

使用 Langchain 中不同组件的特性和能力,可以构建不同场景下的应用,如聊天机器人、基于文档的问答、知识管理、个人助理、Agent 智能体等等。

如果需在本地或离线环境下使用大模型,需要首先将所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。

再比如,使用 Index 部分涉及的 RAG 技术,可以将特定领域的资料存在向量数据库里,在调用大模型时找出相关的部分作为“参考资料”传给大模型,以得到更为符合业务要求的回答。


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能
【LangChain系列】第九篇:LLM 应用评估简介及实践
【5月更文挑战第23天】本文探讨了如何评估复杂且精密的语言模型(LLMs)应用。通过创建QA应用程序,如使用GPT-3.5-Turbo模型,然后构建测试数据,包括手动创建和使用LLM生成示例。接着,通过手动评估、调试及LLM辅助评估来衡量性能。手动评估借助langchain.debug工具提供执行细节,而QAEvalChain则利用LLM的语义理解能力进行评分。这些方法有助于优化和提升LLM应用程序的准确性和效率。
573 8
|
7月前
|
存储 机器学习/深度学习 人工智能
【LangChain系列】第八篇:文档问答简介及实践
【5月更文挑战第22天】本文探讨了如何使用大型语言模型(LLM)进行文档问答,通过结合LLM与外部数据源提高灵活性。 LangChain库被介绍为简化这一过程的工具,它涵盖了嵌入、向量存储和不同类型的检索问答链,如Stuff、Map-reduce、Refine和Map-rerank。文章通过示例展示了如何使用LLM从CSV文件中提取信息并以Markdown格式展示
317 2
|
7月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【LangChain系列】第七篇:工作流(链)简介及实践
【5月更文挑战第21天】LangChain是一个框架,利用“链”的概念将复杂的任务分解为可管理的部分,便于构建智能应用。数据科学家可以通过组合不同组件来处理和分析非结构化数据。示例中展示了如何使用LLMChain结合OpenAI的GPT-3.5-turbo模型,创建提示模板以生成公司名称和描述。顺序链(SimpleSequentialChain和SequentialChain)则允许按顺序执行多个步骤,处理多个输入和输出
1023 1
|
7月前
|
存储 人工智能 搜索推荐
【LangChain系列】第六篇:内存管理简介及实践
【5月更文挑战第20天】【LangChain系列】第六篇:内存管理简介及实践
208 0
【LangChain系列】第六篇:内存管理简介及实践
|
7月前
|
存储 机器学习/深度学习 人工智能
【LangChain系列】第一篇:文档加载简介及实践
【5月更文挑战第14天】 LangChain提供80多种文档加载器,简化了从PDF、网站、YouTube视频和Notion等多来源加载与标准化数据的过程。这些加载器将不同格式的数据转化为标准文档对象,便于机器学习工作流程中的数据处理。文中介绍了非结构化、专有和结构化数据的加载示例,包括PDF、YouTube视频、网站和Notion数据库的加载方法。通过LangChain,用户能轻松集成和交互各类数据源,加速智能应用的开发。
386 1
|
7月前
|
人工智能 安全 API
【LangChain系列】第十篇:数据保护简介及实践
【5月更文挑战第24天】本文探讨了在使用大型语言模型时保护个人数据的重要性,特别是涉及敏感信息如PII(个人可识别信息)的情况。为了降低数据泄露风险,文章介绍了数据匿名化的概念,通过在数据进入LLM前替换敏感信息。重点讲解了Microsoft的Presidio库,它提供了一个可定制的文本匿名化工具。此外,文章还展示了如何结合LangChain库创建一个安全的匿名化流水线,包括初始化匿名器、添加自定义识别器和操作符,以及在问答系统中集成匿名化流程。通过这种方式,可以在利用LLMs的同时保护数据隐私。
180 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【LangChain系列】第五篇:大语言模型中的提示词,模型及输出简介及实践
【5月更文挑战第19天】LangChain是一个Python库,简化了与大型语言模型(LLM)如GPT-3.5-turbo的交互。通过ChatOpenAI类,开发者可以创建确定性输出的应用。提示词是指导LLM执行任务的关键,ChatPromptTemplate允许创建可重用的提示模板。输出解析器如StructuredOutputParser将模型的响应转化为结构化数据,便于应用处理。LangChain提供可重用性、一致性、可扩展性,并有一系列预建功能。它使得利用LLM构建复杂、直观的应用变得更加容易。
312 0
|
7月前
|
存储 人工智能 数据库
【LangChain系列】第四篇:向量数据库与嵌入简介及实践
【5月更文挑战第18天】 本文介绍了构建聊天机器人和语义搜索的关键组件——向量存储和嵌入。首先,文章描述了工作流程,包括文档拆分、生成嵌入和存储在向量数据库中。接着,通过Python代码展示了如何设置环境并处理文档,以及如何创建和比较文本嵌入。向量存储部分,文章使用Chroma存储嵌入,并进行了相似性检索的演示。最后,讨论了故障模式,如重复文档和未捕获结构化信息的问题。整个博文中,作者强调了在实际应用中解决这些问题的重要性。
411 0
|
7月前
|
人工智能 自然语言处理 API
【LangChain系列】第三篇:Agent代理简介及实践
【5月更文挑战第17天】LangChain代理利用大型语言模型(LLM)作为推理引擎,结合各种工具和数据库,处理复杂任务和决策。这些代理能理解和生成人类语言,访问外部信息,并结合LLM进行推理。文章介绍了如何通过LangChain构建代理,包括集成DuckDuckGo搜索和维基百科,以及创建Python REPL工具执行编程任务。此外,还展示了如何构建自定义工具,如获取当前日期的示例,强调了LangChain的灵活性和可扩展性,为LLM的应用开辟了新途径。
490 0
|
7月前
|
测试技术 API 数据库
【LangChain系列】第二篇:文档拆分简介及实践
【5月更文挑战第15天】 本文介绍了LangChain中文档拆分的重要性及工作原理。文档拆分有助于保持语义内容的完整性,对于依赖上下文的任务尤其关键。LangChain提供了多种拆分器,如CharacterTextSplitter、RecursiveCharacterTextSplitter和TokenTextSplitter,分别适用于不同场景。MarkdownHeaderTextSplitter则能根据Markdown标题结构进行拆分,保留文档结构。通过实例展示了如何使用这些拆分器,强调了选择合适拆分器对提升下游任务性能和准确性的影响。
661 0