流计算引擎数据问题之Apache Kafka Streams 没有采用低水印方案如何解决

简介: 流计算引擎数据问题之Apache Kafka Streams 没有采用低水印方案如何解决

问题一:Apache Kafka Streams 为何没有采用低水印方案?


Apache Kafka Streams 为何没有采用低水印方案?


参考回答:

Apache Kafka Streams 没有采用低水印方案主要是因为其“持续增量处理流表”模型和追求更简洁直观的完整性解决方案的设计理念。Kafka Streams 允许在每个算子上配置宽限期来进行细粒度的完整性确定,而不是依赖全局的低水印时间戳。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654071


问题二:在 Spark Structured 中,为什么全局水印的设计可能会导致不正确的聚合结果?


在 Spark Structured 中,为什么全局水印的设计可能会导致不正确的聚合结果?


参考回答:

在 Spark Structured Streaming 中,全局水印的设计初衷是用于计算中的状态管理,而不是为了支持复杂的完整性推理。因此,当在数据流拓扑中进行链式聚合时(即下游聚合算子的输入是上游聚合算子的输出),使用全局水印可能会导致不正确的聚合结果,因为全局水印无法准确反映每个聚合阶段的进度。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654072


问题三:流计算引擎计算得到正确结果的关键是什么?


流计算引擎计算得到正确结果的关键是什么?


参考回答:

流计算引擎计算得到正确结果的关键在于引擎一致性和数据的完整性。引擎一致性是分布式应用的容错问题,而数据完整性保证了无序无界数据在流计算中有确定性的数据集。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654073


问题四:引擎一致性在流计算中具体指的是什么?


引擎一致性在流计算中具体指的是什么?


参考回答:

引擎一致性在流计算中实质上是分布式应用的容错问题,即确保在分布式环境下,即使出现故障,流计算引擎也能输出一致性的结果(状态)。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654074


问题五:数据完整性在流计算中的作用是什么?


数据完整性在流计算中的作用是什么?


参考回答:

数据完整性在流计算中保证了无序无界数据在流计算中有确定性的数据集,这在需要单个聚合结果、缺失检测、增量处理等场景中至关重要。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/654075

目录
相关文章
|
5月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
545 4
|
7月前
|
消息中间件 存储 监控
Apache Kafka 3.0与KRaft模式的革新解读
在该架构中,Kafka集群依旧包含多个broker节点,但已不再依赖ZooKeeper集群。被选中的Kafka集群Controller将从KRaft Quorum中加载其状态,并在必要时通知其他Broker节点关于元数据的变更。这种设计支持更多分区与快速Controller切换,并有效避免了因数据不一致导致的问题。
|
11月前
|
存储 SQL Apache
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
本文将从技术选型的视角,从开放性、系统架构、实时写入、实时存储、实时查询等多方面,深入分析 Apache Doris 与 Elasticsearch 的能力差异及性能表现
1324 17
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
704 5
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
601 1
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
793 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
454 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
6月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
797 9
Apache Flink:从实时数据分析到实时AI

推荐镜像

更多