DEM转换为gltf
目录
1. 概述
DEM(地形文件)天然自带三维信息,可以将其转换成gltf模型文件。DEM是栅格数据,可以通过GDAL进行读取;gltf是一种JSON格式,可以采用nlohmann/json进行读写。
2. 详细
直接把代码贴出来:
#include <iostream> #include <fstream> #include <iomanip> #include <nlohmann\json.hpp> #include "fifo_map.hpp" #include <gdal/gdal_priv.h> using namespace std; using namespace nlohmann; // A workaround to give to use fifo_map as map, we are just ignoring the 'less' compare template<class K, class V, class dummy_compare, class A> using my_workaround_fifo_map = fifo_map<K, V, fifo_map_compare<K>, A>; using my_json = basic_json<my_workaround_fifo_map>; int main() { GDALAllRegister(); CPLSetConfigOption("GDAL_FILENAME_IS_UTF8", "NO"); //支持中文路径 my_json gltf; gltf["asset"] = { {"generator", "CL"}, {"version", "2.0"} }; gltf["scene"] = 0; gltf["scenes"] = { {{"nodes", {0} }} }; gltf["nodes"] = { {{"mesh", 0}} }; my_json positionJson; positionJson["POSITION"] = 1; positionJson["TEXCOORD_0"] = 2; my_json primitivesJson; primitivesJson = { {{"attributes", positionJson}, {"indices", 0}, {"material", 0} } }; gltf["meshes"] = { {{"primitives", primitivesJson}} }; my_json pbrJson; pbrJson["baseColorTexture"]["index"] = 0; gltf["materials"] = { {{"pbrMetallicRoughness", pbrJson}} }; size_t pointNum = 0; size_t binBufNum = 0; size_t indicesNum = 0; { string binPath = "D:/Work/WebGLTutorial/Data/new.bin"; ofstream binFile(binPath, std::ios::binary); const char *filePath = "D:/Work/WebGLTutorial/Data/DEM.tif"; GDALDataset* img = (GDALDataset *)GDALOpen(filePath, GA_ReadOnly); if (!img) { printf("Can't Open Image!"); return 0; } int bufWidth = img->GetRasterXSize(); //图像宽度 int bufHeight = img->GetRasterYSize(); //图像高度 int bandNum = img->GetRasterCount(); //波段数 if (bandNum != 1) { printf("DEM波段数不为1"); return 0; } int depth = GDALGetDataTypeSize(img->GetRasterBand(1)->GetRasterDataType()) / 8; //图像深度 //获取地理坐标信息 double padfTransform[6]; if (img->GetGeoTransform(padfTransform) == CE_Failure) { printf("获取仿射变换参数失败"); return 0; } double startX = padfTransform[0]; double dX = padfTransform[1]; double startY = padfTransform[3]; double dY = padfTransform[5]; //申请buf size_t imgBufNum = (size_t)bufWidth * bufHeight * bandNum; float *imgBuf = new float[imgBufNum]; //读取 img->RasterIO(GF_Read, 0, 0, bufWidth, bufHeight, imgBuf, bufWidth, bufHeight, GDT_Float32, bandNum, nullptr, bandNum*depth, bufWidth*bandNum*depth, depth); pointNum = (size_t)bufWidth * bufHeight; size_t position_texture_num = pointNum * 5; float *position_texture = new float[position_texture_num]; for (int yi = 0; yi < bufHeight; yi++) { for (int xi = 0; xi < bufWidth; xi++) { size_t n = (size_t)(bufWidth * 5) * yi + 5 * xi; position_texture[n] = dX * xi; position_texture[n+1] = dY * yi; size_t m = (size_t)(bufWidth * bandNum) * yi + bandNum * xi; position_texture[n + 2] = imgBuf[m]; position_texture[n + 3] = float(xi) / (bufWidth-1); position_texture[n + 4] = float(yi) / (bufHeight-1); } } //释放 delete[] imgBuf; imgBuf = nullptr; binFile.write((char*)position_texture, position_texture_num * sizeof(float)); size_t vertexBufNum = position_texture_num * sizeof(float); binBufNum = binBufNum + vertexBufNum; int mod = vertexBufNum % sizeof(uint16_t); if (mod != 0) { int spaceNum = sizeof(float) - mod; char *space = new char[spaceNum]; binBufNum = binBufNum + sizeof(char) * spaceNum; memset(space, 0, sizeof(char) * spaceNum); binFile.write(space, sizeof(char) * spaceNum); delete[] space; space = nullptr; } indicesNum = (size_t)(bufWidth - 1) * (bufHeight - 1) * 2 * 3; uint16_t *indices = new uint16_t[indicesNum]; for (int yi = 0; yi < bufHeight-1; yi++) { for (int xi = 0; xi < bufWidth-1; xi++) { uint16_t m00 = (uint16_t)(bufWidth * yi + xi) ; uint16_t m01 = (uint16_t)(bufWidth * (yi+1) + xi); uint16_t m11 = (uint16_t)(bufWidth * (yi + 1) + xi + 1); uint16_t m10 = (uint16_t)(bufWidth * yi + xi + 1); size_t n = (size_t)(bufWidth - 1) * yi + xi; indices[n * 6] = m00; indices[n * 6 + 1] = m01; indices[n * 6 + 2] = m11; indices[n * 6 + 3] = m11; indices[n * 6 + 4] = m10; indices[n * 6 + 5] = m00; } } binFile.write((char*)indices, sizeof(uint16_t) * indicesNum); binBufNum = binBufNum + sizeof(uint16_t) * indicesNum; delete[] position_texture; position_texture = nullptr; delete[] indices; indices = nullptr; } gltf["textures"] = { {{"sampler", 0}, {"source", 0}} }; gltf["images"] = { {{"uri", "tex.jpg"}} }; gltf["samplers"] = { {{"magFilter", 9729}, {"minFilter", 9987}, {"wrapS", 33648}, {"wrapT", 33648}} }; gltf["buffers"] = { {{"uri", "new.bin"}, {"byteLength", binBufNum}} }; my_json indicesBufferJson; indicesBufferJson["buffer"] = 0; indicesBufferJson["byteOffset"] = pointNum * 5 * 4; indicesBufferJson["byteLength"] = indicesNum * 2; indicesBufferJson["target"] = 34963; my_json positionBufferJson; positionBufferJson["buffer"] = 0; positionBufferJson["byteStride"] = sizeof(float) * 5; positionBufferJson["byteOffset"] = 0; positionBufferJson["byteLength"] = pointNum * 5 * 4; positionBufferJson["target"] = 34962; gltf["bufferViews"] = { indicesBufferJson, positionBufferJson }; my_json indicesAccessors; indicesAccessors["bufferView"] = 0; indicesAccessors["byteOffset"] = 0; indicesAccessors["componentType"] = 5123; indicesAccessors["count"] = indicesNum; indicesAccessors["type"] = "SCALAR"; indicesAccessors["max"] = { 18719 }; indicesAccessors["min"] = { 0 }; my_json positionAccessors; positionAccessors["bufferView"] = 1; positionAccessors["byteOffset"] = 0; positionAccessors["componentType"] = 5126; positionAccessors["count"] = pointNum; positionAccessors["type"] = "VEC3"; positionAccessors["max"] = { 770, 0.0, 1261.151611328125 }; positionAccessors["min"] = { 0.0, -2390, 733.5555419921875 }; my_json textureAccessors; textureAccessors["bufferView"] = 1; textureAccessors["byteOffset"] = sizeof(float) * 3; textureAccessors["componentType"] = 5126; textureAccessors["count"] = pointNum; textureAccessors["type"] = "VEC2"; textureAccessors["max"] = { 1, 1 }; textureAccessors["min"] = { 0, 0 }; gltf["accessors"] = { indicesAccessors, positionAccessors, textureAccessors }; string jsonFile = "D:/Work/WebGLTutorial/Data/new.gltf"; std::ofstream outFile(jsonFile); outFile << std::setw(4) << gltf << std::endl; }
1.这里使用的DEM是tif格式的图像,使用GDAL读取。由于显示模型文件不需要大坐标,所以没有把DEM的起始XY坐标值算进去。同时附带了一张纹理贴图,正好覆盖整个DEM的范围。
2.转换的的原理非常简单,就是将DEM的每个网格绘制成两个三角形,通过顶点索引进行绘制。gltf具体的规范可以参看github上的教程,网上还有相关的中文翻译。
3.原生的nlohmann/json组件写出来的JSON格式是根据字符串顺序排序不是根据插入顺序排序的,查阅的时候不方便。所以这里使用了nlohmann::fifo_map容器专门化对象类型。
3. 结果
转换出来的结果用OSG显示如下:
4. 参考
[1] github上的gltf教程
[2] gltf教程中文翻译