Python中ArcPy实现多张栅格遥感影像无效值NoData批量填充

简介: Python中ArcPy实现多张栅格遥感影像无效值NoData批量填充

  本文介绍基于PythonArcPy模块,对大量栅格遥感影像文件批量进行无效值NoData值)填充的方法。

  在处理栅格图像文件时,我们经常会遇到图像中存在有无效值(即NoData值)的情况。如下图所示,这里有一个矢量面要素图层和该矢量图层范围对应的一景栅格图像;可以看到,由于该栅格图像存在无效值NoData,因此栅格图像是没有完全遮盖矢量图层的。

  在一些情况下,这些无效值可能会对我们的后续图像处理操作带来很多麻烦。那么,我们可以通过代码,对大量存在NoData值的栅格图像进行无效值填充。

  首先,我们来明确一下本文的具体需求。现有一个存储有多张.tif格式遥感影像的文件夹,且文件夹内除了.tif格式的遥感影像文件外,还具有其它格式的文件。

  其中,每一个.tif格式遥感影像都存在若干无效值像元;我们希望对每一张遥感影像进行NoData值的填充。

  明确了需求后,我们就可以开始具体的操作。首先,本文所需用到的代码如下。

# -*- coding: utf-8 -*-
"""
Created on Tue Apr 19 14:53:49 2022
@author: fkxxgis
"""
import arcpy
from arcpy.sa import *
tif_file_path="E:/LST/Data/MODIS/13_Average/"
fill_file_path="E:/LST/Data/MODIS/14_AverageFill/"
arcpy.env.workspace=tif_file_path
tif_file_name=arcpy.ListRasters("*","tif")
for tif_file in tif_file_name:
    fill_file=arcpy.sa.Con(IsNull(tif_file),
                           FocalStatistics(tif_file,NbrAnnulus(1,12,"CELL"),"MEAN"),
                           tif_file)
    fill_result_path=fill_file_path+tif_file.strip(".tif")+"_Fill.tif"
    fill_file.save(fill_result_path)

  其中,tif_file_path是原有填充无效值前遥感图像的保存路径,fill_file_path是我们新生成的填充无效值后遥感影像的保存路径,也就是结果保存路径。

  首先,我们利用arcpy.ListRasters()函数,获取路径下原有的全部.tif格式的图像文件;接下来,遍历tif_file_path路径下全部.tif格式图像文件,并分别执行arcpy.sa.Con()这个栅格计算函数。其中,该函数中IsNull(tif_file)表示首先选择每一景图像中的无效值像元,随后通过FocalStatistics()函数进行无效值的填充;NbrAnnulus(1,12,"CELL")参数表示,以当前无效值像元为圆心,12为圆环外半径,1为圆环内半径,构建一个圆环作为参考区域,从而以圆环内所有像元的值作为参考进行圆心处该无效值像元的填充(除了圆环,还可以设置矩形、扇形、圆形等);"MEAN"参数表示以刚刚这个圆环中全部像元数值的平均值作为圆心处该无效值像元的数值。最后,我们在原有遥感影像文件名后添加"_Fill.tif"后缀,作为填充后遥感影像文件的新文件名。

  在 IDLE (Python GUI) 中运行代码。代码运行完毕后,我们选取一景图像,对比填充前后的图像结果,如下图所示;其中,这一张是填充前图像。

  这一张则为填充后图像。

  通过对比,我们可以看到填充后图像中的空白区域(NoData值区域)已经明显较之填充前图像有了很大程度的减少(图像右下角尤为明显)。如果大家想让更多的NoData值区域得到填充,就可以将FocalStatistics()函数中设定的参考区域的范围更大一些;当然,这样也会稍微降低填充值的精度,大家结合实际需要来操作即可。

欢迎关注公众号/CSDN/知乎/微博:疯狂学习GIS


相关文章
|
6月前
|
数据采集 数据挖掘 Python
【Python DataFrame专栏】讲解DataFrame中缺失值的处理方法,包括填充、删除和插值技术。
【5月更文挑战第20天】在Python的Pandas库中处理DataFrame缺失值,包括查看缺失值(`isnull().sum()`)、填充(`fillna()`:固定值、前向填充、后向填充)、删除(`dropna()`:按行或列)和插值(`interpolate()`:线性、多项式、分段常数)。示例代码展示了这些方法的使用。
501 3
【Python DataFrame专栏】讲解DataFrame中缺失值的处理方法,包括填充、删除和插值技术。
|
3月前
|
Python
【Python】解决pandas读取excel,以0向前填充的数字会变成纯数字
本文介绍了两种解决Python使用pandas库读取Excel时,数字前填充的0丢失问题的方法:一是在读取时指定列以字符串格式读取,二是在Excel中预先将数值转换为文本格式。
190 0
【Python】解决pandas读取excel,以0向前填充的数字会变成纯数字
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
使用Python实现深度学习模型:智能医疗影像识别与诊断
【8月更文挑战第19天】 使用Python实现深度学习模型:智能医疗影像识别与诊断
70 0
|
5月前
|
存储 算法 数据挖掘
python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】
python5种算法模拟螺旋、分层填充、递归、迭代、分治实现螺旋矩阵ll【力扣题59】
|
5月前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的遥感地理空间物体检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测(2)
基于YOLOv8深度学习的遥感地理空间物体检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测
|
5月前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的遥感地理空间物体检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测(1)
基于YOLOv8深度学习的遥感地理空间物体检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测
|
6月前
|
存储 安全 数据库
自动化密码填充:使用Python提高日常工作效率
自动化密码填充:使用Python提高日常工作效率
122 0
|
6月前
|
存储 编解码 Python
Python GDAL基于经、纬度提取大量遥感影像中相同位置处像元的数值
【2月更文挑战第8天】本文介绍基于Python语言中的gdal模块,对2景不同的遥感影像加以对应位置像素值匹配的方法——即基于一景遥感影像的每一个像元,提取另一景遥感影像中,与之空间位置相同的像元的像素值的方法~
206 1
Python GDAL基于经、纬度提取大量遥感影像中相同位置处像元的数值
|
6月前
|
存储 Python
用Python提取长时间序列遥感文件中缺失文件所对应的日期
【2月更文挑战第1天】本文介绍批量下载大量多时相的遥感影像文件后,基于Python语言与每一景遥感影像文件的文件名,对这些已下载的影像文件加以缺失情况的核对,并自动统计、列出未下载影像所对应的时相的方法~
用Python提取长时间序列遥感文件中缺失文件所对应的日期
|
6月前
|
BI 开发者 数据格式
Python代码填充数据到word模板中
【4月更文挑战第16天】
138 0

热门文章

最新文章