可自主进化的Agent?首个端到端智能体符号化训练框架开源了

简介: 【8月更文挑战第13天】近年来,AI领域在构建能自主完成复杂任务的智能体方面取得重大突破。这些智能体通常基于大型语言模型,可通过学习适应环境。为简化设计流程,AIWaves Inc.提出智能体符号化学习框架,使智能体能在数据中心模式下自我优化,以推进通向通用人工智能的道路。该框架将智能体视作符号网络,利用提示、工具及其组合方式定义可学习的权重,并采用自然语言模拟反向传播和梯度下降等学习过程,指导智能体的自我改进。实验显示,此框架能有效促进智能体的自主进化。尽管如此,该框架仍面临高质量提示设计及计算资源需求高等挑战。论文详情参见:https://arxiv.org/pdf/2406.18532。

近年来,人工智能(AI)领域在构建能够自主解决复杂任务的智能体(agent)方面取得了显著进展。这些智能体通常由大型语言模型(LLM)驱动,能够通过学习和适应环境来执行各种任务。然而,目前的智能体研究主要依赖于模型中心或工程中心的方法,这需要大量的人工工程努力来设计和优化智能体系统。

为了解决这个问题,来自AIWaves Inc.的研究人员提出了一种名为智能体符号化学习(Agent Symbolic Learning)的新型框架,该框架能够使智能体在数据中心的方式下自主优化自身。该框架的目标是实现智能体的自主学习和进化,从而为实现通用人工智能(AGI)铺平道路。

智能体符号化学习框架的核心思想是将智能体视为一个符号网络,其中可学习的权重由提示(prompts)、工具(tools)和它们组合的方式定义。该框架通过模拟连接主义学习中的两个基本算法——反向传播和梯度下降,来优化智能体内部的符号网络。

与传统的数值权重优化不同,智能体符号化学习使用自然语言模拟权重、损失和梯度。通过这种方式,智能体可以生成文本形式的损失和梯度,从而指导自身的优化过程。

为了证明智能体符号化学习框架的有效性,研究人员在标准基准和复杂真实世界任务上进行了一系列的实验。实验结果表明,该框架能够使智能体在部署后通过学习和适应环境来更新自身,从而实现智能体的自主进化。

智能体符号化学习框架的提出为智能体研究提供了一种全新的思路。通过将智能体视为一个符号网络,并使用自然语言模拟权重和梯度,该框架能够实现智能体的端到端优化,从而避免了传统方法中对孤立组件进行优化所带来的局限性。

然而,智能体符号化学习框架也存在一些挑战和限制。首先,该框架的实现需要依赖高质量的提示和工具,而这些提示和工具的设计和优化本身就是一个复杂的问题。其次,智能体符号化学习框架的训练和优化过程可能需要大量的计算资源和时间,这对于一些实际应用场景来说可能不太可行。

论文地址:https://arxiv.org/pdf/2406.18532

目录
相关文章
|
15天前
|
数据采集 自然语言处理 安全
控制电脑手机的智能体人人都能造,微软开源OmniParser
微软研究团队推出OmniParser,旨在提升GPT-4V等多模态模型在用户界面操作方面的性能。通过解析用户界面截图为结构化元素,OmniParser显著增强了模型的交互能力,使其在多种基准测试中表现出色。该技术开源,促进了社区合作与技术创新,但同时也面临数据质量、计算资源及安全隐私等挑战。
37 14
|
9天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
89 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
10天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
71 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
13天前
|
存储 人工智能
Optimus-1:哈工大联合鹏城实验室推出挑战开放世界中长期任务的智能体框架
Optimus-1是由哈尔滨工业大学(深圳)和鹏城实验室联合推出的智能体框架,旨在解决开放世界环境中长期任务的挑战。该框架结合了结构化知识和多模态经验,通过混合多模态记忆模块、知识引导规划器和经验驱动反射器,显著提升了在Minecraft等环境中的长期任务性能。本文将详细介绍Optimus-1的主要功能、技术原理以及如何运行该框架。
44 7
Optimus-1:哈工大联合鹏城实验室推出挑战开放世界中长期任务的智能体框架
|
18天前
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
65 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
|
17天前
|
人工智能 自然语言处理 数据挖掘
田渊栋团队新作祭出Agent-as-a-Judge!AI智能体自我审判,成本暴跌97%
田渊栋团队提出Agent-as-a-Judge框架,利用智能体自身评估其他智能体的性能,不仅关注最终结果,还能提供中间反馈,更全面准确地反映智能体的真实能力。该框架在DevAI基准测试中表现出色,成本效益显著,为智能体的自我改进提供了有力支持。
35 7
|
29天前
|
JSON 数据可视化 知识图谱
基于百炼 qwen plus 、开源qwen2.5 7B Instruct 建非schema限定的图谱 用于agent tool的图谱形式结构化 文本资料方案
基于百炼 qwen plus 的上市企业ESG图谱构建工作,通过调用阿里云的 OpenAI 服务,从 Excel 文件读取上市公司 ESG 报告数据,逐条处理并生成知识图谱,最终以 YAML 格式输出。该过程包括数据读取、API 调用、结果处理和文件保存等步骤,确保生成的知识图谱全面、动态且结构清晰。此外,还提供了基于 Pyvis 的可视化工具,将生成的图谱以交互式图形展示,便于进一步分析和应用。
353 3
|
2月前
|
人工智能 运维 自然语言处理
对话蚂蚁开源蒋炜:让 Agent 把运维人员从 24 小时的待命中解放出来
当整个行业的智慧都集中在一件事情上时,比起闭门造车,开源一定能带来更好的技术迭代和发展。CodeFuse 「编码挑战季」活动火热进行中,诚邀广大开发者们参与编码挑战
127 3
对话蚂蚁开源蒋炜:让 Agent 把运维人员从 24 小时的待命中解放出来
|
29天前
|
存储 人工智能 算法
卷起来!让智能体评估智能体,Meta发布Agent-as-a-Judge
Meta(原Facebook)提出了一种名为Agent-as-a-Judge的框架,用于评估智能体的性能。该框架包含八个模块,通过构建项目结构图、定位相关文件、读取多格式数据、搜索和检索信息、询问要求满足情况、存储历史判断、以及规划下一步行动,有效提升了评估的准确性和稳定性。实验结果显示,Agent-as-a-Judge在处理复杂任务依赖关系方面优于大型语言模型,但在资源消耗和潜在偏见方面仍面临挑战。
33 1
|
1月前
|
敏捷开发 机器学习/深度学习 数据采集
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
131 4
下一篇
DataWorks