利用各类回归模型,对数据集进行建模

简介: 【8月更文挑战第8天】利用各类回归模型,对数据集进行建模。

利用各类回归模型,对数据集进行建模

模型的名字

names = ['LinerRegression',
'Ridge',
'Lasso',
'Random Forrest',
'GBDT',
'Support Vector Regression',
'ElasticNet',
'XgBoost']

定义模型

cv在这里是交叉验证的思想

models = [LinearRegression(),
RidgeCV(alphas=(0.001,0.1,1),cv=3),
LassoCV(alphas=(0.001,0.1,1),cv=5),
RandomForestRegressor(n_estimators=10),
GradientBoostingRegressor(n_estimators=30),
SVR(),
ElasticNet(alpha=0.001,max_iter=10000),
XGBRegressor()]

输出所有回归模型的R2评分

定义R2评分的函数

def R2(model,x_train, x_test, y_train, y_test):

model_fitted = model.fit(x_train,y_train)
y_pred = model_fitted.predict(x_test)
score = r2_score(y_test, y_pred)
return score

遍历所有模型进行评分

for name,model in zip(names,models):
score = R2(model,x_train, x_test, y_train, y_test)
print("{}: {:.6f}, {:.4f}".format(name,score.mean(),score.std()))

输出:
LinerRegression: 0.564144, 0.0000
Ridge: 0.563700, 0.0000
Lasso: 0.564078, 0.0000
Random Forrest: 0.646657, 0.0000
GBDT: 0.725883, 0.0000
Support Vector Regression: 0.517310, 0.0000
ElasticNet: 0.564021, 0.0000
XgBoost: 0.765266, 0.0000

相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
57 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
30天前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
24 0
|
5月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】分类与预测算法的评价与优化
【机器学习】分类与预测算法的评价与优化
97 0
|
6月前
时间序列分析实战(四):Holt-Winters建模及预测
时间序列分析实战(四):Holt-Winters建模及预测
|
6月前
|
数据可视化 vr&ar Python
时间序列分析技巧(二):ARIMA模型建模步骤总结
时间序列分析技巧(二):ARIMA模型建模步骤总结
|
6月前
|
数据可视化
R语言信用风险回归模型中交互作用的分析及可视化
R语言信用风险回归模型中交互作用的分析及可视化
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
【机器学习】样本、特征、标签:构建智能模型的三大基石
【机器学习】样本、特征、标签:构建智能模型的三大基石
2757 0
|
机器学习/深度学习 API
机器学习逻辑回归分类评估方法
机器学习逻辑回归分类评估方法
87 0
|
机器学习/深度学习 自然语言处理 数据可视化
时序预测的三种方式:统计学模型、机器学习、循环神经网络
时序预测是一类经典的问题,在学术界和工业界都有着广泛的研究和应用。甚至说,世间万物加上时间维度后都可抽象为时间序列问题,例如股票价格、天气变化等等。关于时序预测问题的相关理论也极为广泛,除了经典的各种统计学模型外,当下火热的机器学习以及深度学习中的循环神经网络也都可以用于时序预测问题的建模。今天,本文就来介绍三种方式的简单应用,并在一个真实的时序数据集上加以验证。
461 0
时序预测的三种方式:统计学模型、机器学习、循环神经网络
|
自然语言处理 数据处理 API
零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。
零样本文本分类应用:基于UTC的医疗意图多分类,打通数据标注-模型训练-模型调优-预测部署全流程。