[loki]轻量级日志聚合系统loki快速入门

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
可观测可视化 Grafana 版,10个用户账号 1个月
简介: [loki]轻量级日志聚合系统loki快速入门

前言

  • 简述:loki是由grafana开源的日志聚合系统,相较于ELK、EFK更轻量。
  • loki特性:
  • 不对日志进行全文索引。通过存储压缩非结构化日志和仅索引元数据,Loki 操作起来会更简单,更省成本。
  • 通过使用与 Prometheus 相同的标签记录流对日志进行索引和分组,这使得日志的扩展和操作效率更高,能对接 alertmanager;
  • 特别适合储存 Kubernetes Pod 日志;诸如 Pod 标签之类的元数据会被自动删除和编入索引;
  • Grafana原生支持
  • 版本:
  • 系统:centos7
  • loki:2.6.1
  • promtail:2.6.1
  • grafana: 8.3.3

本文以loki监控nginx日志为例。nginx日志所在目录为 /home/admin/apps/nginx/logs/

安装loki

docker方式

PS: 未经测试

docker pull grafana/loki
wget https://raw.githubusercontent.com/grafana/loki/v2.6.1/cmd/loki/loki-local-config.yaml -O loki-config.yaml
docker run --name loki -d -v $(pwd):/mnt/config -p 3100:3100 grafana/loki:2.6.1 -config.file=/mnt/config/loki-config.yaml

二进制方式

  1. 官方GitHub仓库的Release页下载压缩包并解压
  2. 编辑loki-config.yaml
auth_enabled: false
server:
  http_listen_port: 3100
  grpc_listen_port: 9096
ingester:
  wal:
    enabled: true
    dir: /home/apps/loki/wal
  lifecycler:
    address: 127.0.0.1
    ring:
      kvstore:
        store: inmemory
      replication_factor: 1
    final_sleep: 0s
  chunk_idle_period: 1h       # Any chunk not receiving new logs in this time will be flushed
  max_chunk_age: 1h           # All chunks will be flushed when they hit this age, default is 1h
  chunk_target_size: 1048576  # Loki will attempt to build chunks up to 1.5MB, flushing first if chunk_idle_period or max_chunk_age is reached first
  chunk_retain_period: 30s    # Must be greater than index read cache TTL if using an index cache (Default index read cache TTL is 5m)
  max_transfer_retries: 0     # Chunk transfers disabled
schema_config:
  configs:
    - from: 2020-10-24
      store: boltdb-shipper
      object_store: filesystem
      schema: v11
      index:
        prefix: index_
        period: 24h
storage_config:
  boltdb_shipper:
    active_index_directory: /home/apps/loki/boltdb-shipper-active
    cache_location: /home/apps/loki/boltdb-shipper-cache
    cache_ttl: 24h         # Can be increased for faster performance over longer query periods, uses more disk space
    shared_store: filesystem
  filesystem:
    directory: /home/apps/loki/chunks
compactor:
  working_directory: /home/apps/loki/boltdb-shipper-compactor
  shared_store: filesystem
limits_config:
  reject_old_samples: true
  reject_old_samples_max_age: 168h
chunk_store_config:
  max_look_back_period: 0s
table_manager:
  retention_deletes_enabled: false
  retention_period: 0s
ruler:
  storage:
    type: local
    local:
      directory: /home/apps/loki/rules
  rule_path: /home/apps/loki/rules-temp
  alertmanager_url: http://localhost:9093
  ring:
    kvstore:
      store: inmemory
  enable_api: true
  1. 启动
./loki -config.file=loki-config.yaml > /dev/null 2>&1 &

安装promtail

docker方式

PS: 未经测试

wget https://raw.githubusercontent.com/grafana/loki/v2.6.1/clients/cmd/promtail/promtail-docker-config.yaml -O promtail-config.yaml
docker run --name promtail -d -v $(pwd):/mnt/config -v /var/log:/var/log --link loki grafana/promtail:2.6.1 -config.file=/mnt/config/promtail-config.yaml

二进制方式

  1. 官方GitHub仓库Release页下载压缩包并解压
  2. 编辑promtail-config.yaml
server:
  http_listen_port: 9080
  grpc_listen_port: 0
positions:
  filename: /tmp/positions.yaml
clients:
  - url: http://192.168.2.249:3100/loki/api/v1/push
scrape_configs:
- job_name: nginx
  static_configs:
  - targets:
      - 192.168.2.249
    labels:
      job: varlogs
      __path__: /home/admin/apps/nginx/logs/*log
  1. 启动
nohup ./promtail -config.file=promtail-config.yaml > /dev/null 2>&1 &

安装grafana

  1. 创建容器并运行
docker pull 'grafana/grafana:latest'
docker run --name grafana -p 3000:3000 -d 'grafana/grafana:latest'
  1. 浏览器访问ip:3000,账密默认为:admin/admin
  2. 配置loki数据源

参考

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
23天前
|
存储 数据采集 数据处理
【Flume拓扑揭秘】掌握Flume的四大常用结构,构建强大的日志收集系统!
【8月更文挑战第24天】Apache Flume是一个强大的工具,专为大规模日志数据的收集、聚合及传输设计。其核心架构包括源(Source)、通道(Channel)与接收器(Sink)。Flume支持多样化的拓扑结构以适应不同需求,包括单层、扇入(Fan-in)、扇出(Fan-out)及复杂多层拓扑。单层拓扑简单直观,适用于单一数据流场景;扇入结构集中处理多源头数据;扇出结构则实现数据多目的地分发;复杂多层拓扑提供高度灵活性,适合多层次数据处理。通过灵活配置,Flume能够高效构建各种规模的数据收集系统。
28 0
|
23天前
|
缓存 NoSQL Linux
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
|
6天前
|
运维 NoSQL Java
SpringBoot接入轻量级分布式日志框架GrayLog技术分享
在当今的软件开发环境中,日志管理扮演着至关重要的角色,尤其是在微服务架构下,分布式日志的统一收集、分析和展示成为了开发者和运维人员必须面对的问题。GrayLog作为一个轻量级的分布式日志框架,以其简洁、高效和易部署的特性,逐渐受到广大开发者的青睐。本文将详细介绍如何在SpringBoot项目中接入GrayLog,以实现日志的集中管理和分析。
36 1
|
12天前
|
JSON 缓存 fastjson
一行日志引发的系统异常
本文记录了一行日志引发的系统异常以及作者解决问题的思路。
|
13天前
|
存储 分布式计算 资源调度
通过日志聚合将作业日志存储在HDFS中
如何通过配置Hadoop的日志聚合功能,将作业日志存储在HDFS中以实现长期保留,并详细说明了相关配置参数和访问日志的方法。
15 0
通过日志聚合将作业日志存储在HDFS中
|
24天前
|
监控 安全 Linux
在Linux中,某个账号登陆linux后,系统会在哪些日志文件中记录相关信息?
在Linux中,某个账号登陆linux后,系统会在哪些日志文件中记录相关信息?
|
12天前
|
运维 Kubernetes 监控
Loki+Promtail+Grafana监控K8s日志
综上,Loki+Promtail+Grafana 监控组合对于在 K8s 环境中优化日志管理至关重要,它不仅提供了强大且易于扩展的日志收集与汇总工具,还有可视化这些日志的能力。通过有效地使用这套工具,可以显著地提高对应用的运维监控能力和故障诊断效率。
24 0
|
18天前
|
存储 消息中间件 监控
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统ELK、日志收集分析
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统、日志收集分析。日志级别从小到大的关系(优先级从低到高): ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF 低级别的会输出高级别的信息,高级别的不会输出低级别的信息
|
22天前
|
Kubernetes Ubuntu Windows
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
|
4天前
|
Java
日志框架log4j打印异常堆栈信息携带traceId,方便接口异常排查
日常项目运行日志,异常栈打印是不带traceId,导致排查问题查找异常栈很麻烦。