【数据挖掘工程师-笔试】2022年SHEIN 公司

简介: 关于SHEIN公司数据挖掘工程师岗位的笔试题目分享,包括10个选择题(涉及Naive Bayes、XGBoost与LightGBM原理及对比分析、逻辑回归等),2个问答题(讨论逻辑回归特征离散化的原因和机器学习中常见的最优化方法),以及2个编程题(二叉树的最小深度和硬币找零问题的动态规划解法)。

公司:SHEIN

数据挖掘工程师

1 选择题(10个)

题库来自牛客网–数据挖掘工程师题目
(1)Naive Bayes
(2)XGBoost 和LightGBM原理及对比分析
(3)逻辑回归
。。。忘了

2 问答题(2个)

(1)逻辑回归为什么要对特征进行离散化

  • 非线性,逻辑回归属于广义线性模型,表达能力有限,单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,,能够提高模型表达力,加大拟合, 离散特征的增加和减少都很容易,易于模型的快速迭代;
  • 速度快,稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
  • 鲁棒性,离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
  • 方便交叉与特征组合:离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
  • 稳定性:特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;
  • 简化模型:特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

(2)机器学习中常见的几种最优化方法
1.jpeg

  • 梯度下降法(Gradient Descent)
  • 牛顿法和拟牛顿法(Newton’s method & Quasi-Newton Methods)
  • 共轭梯度法(Conjugate Gradient)
  • 启发式优化方法
  • 解决约束优化问题——拉格朗日乘数法

3 编程题(2个)

(1)111.二叉树的最小深度

def minDepth(self,root)
    if root is None:
        return 0
    if root.left is None and root.right is None:
        return 1
    elif root.left is None:
        return 1 + self.minDepth(root.right)
    elif root.right is None:
        return 1 + self.minDepth(root.left)
    else:
        return 1 + min([self.minDepth(root.left), self.minDepth(root.right)])

(2)面试题 08.11. 硬币
给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)
示例1:

输入: n = 5
输出:2
解释: 有两种方式可以凑成总金额:
5=5
5=1+1+1+1+1

示例2:

输入: n = 10
输出:4
解释: 有四种方式可以凑成总金额:
10=10
10=5+5
10=5+1+1+1+1+1
10=1+1+1+1+1+1+1+1+1+1

解题思路同518:使用动态规划

def waysToChange(self, n: int) -> int:
    dp = [1] + [0] * n
    coins = [1, 5, 10, 25]
    for coin in coins:
        for i in range(coin, n + 1):
            dp[i] = dp[i] + dp[i - coin]
            return dp[-1] % 1000000007
目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
【数据挖掘】2022年深信服科技机器学习工程师笔试
总结了深信服科技机器学习工程师笔试中的几道题目及其解答,涉及数据结构、机器学习评估指标和过拟合缓解方法等内容。
93 1
|
3月前
|
机器学习/深度学习 存储 人工智能
【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题
本文是关于2022-2023年知能科技公司机器学习算法工程师岗位的秋招笔试题,包括简答题和编程题,简答题涉及神经网络防止过拟合的方法、ReLU激活函数的使用原因以及条件概率计算,编程题包括路径行走时间计算和两车相向而行相遇时间问题。
75 2
【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题
|
3月前
|
SQL 存储 算法
【数据挖掘】恒生金融有限公司2023届秋招数据ETL工程师笔试题解析
恒生科技2022年9月24号数据ETL工程师岗位的笔试题目及答案汇总,包括了SQL选择题、SQL编程题和业务应用SQL编程题,涵盖了数据库基础知识、SQL语句编写以及数据仓库概念等多个方面。
60 2
【数据挖掘】恒生金融有限公司2023届秋招数据ETL工程师笔试题解析
|
3月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 历史笔试详解
文章汇总并解析了百度机器学习/数据挖掘工程师/自然语言处理工程师历史笔试题目,覆盖了多分类任务激活函数、TCP首部确认号字段、GMM-HMM模型、朴素贝叶斯模型、SGD随机梯度下降法、随机森林算法、强连通图、红黑树和完全二叉树的高度、最长公共前后缀、冒泡排序比较次数、C4.5属性划分标准、语言模型类型、分词算法、贝叶斯决策理论、样本信息熵、数据降维方法、分箱方法、物理地址计算、分时系统响应时间分析、小顶堆删除调整等多个知识点。
42 1
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 历史笔试详解
|
3月前
|
机器学习/深度学习 人工智能 算法
【数据挖掘】2022年2023届秋招奇虎360机器学习算法工程师 笔试题
本文提供了奇虎360公司2022年秋招机器学习算法工程师岗位的笔试题内容,包括选择题和编程题,涉及概率统计、数据结构、机器学习、计算机组成原理等多个领域。
92 5
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】2022年2023届秋招宏瓴科技公司机器学习算法工程师 笔试题
关于宏瓴科技有限公司2022-2023年秋招机器学习算法工程师岗位的笔试题目及作者个人对部分题目的解答尝试,涉及贝叶斯误差和贝叶斯最优分类器的概念、贝叶斯误差的重要性和估算方法,以及如何有效利用训练集和测试集进行深度学习模型训练的数据集划分策略。
56 4
|
3月前
|
数据可视化 数据挖掘 数据库连接
【数据挖掘】2022年2023届秋招爱玩特智能量化研究员岗 笔试题
本文提供了2022年爱玩特智能量化研究员岗位的笔试题目及Python代码实现,涉及数据库连接、数据可视化、投资回报率计算、累计回报率、描述性统计分析以及简单线性回归等任务。
38 2
|
3月前
|
算法 数据挖掘 索引
【数据挖掘】2022年2023届秋招Kanaries雾角科技算法岗 笔试题
本文介绍了2022年Kanaries雾角科技算法岗位的笔试题目,涵盖了LeetCode和牛客网的题目,包括字符串处理、几何问题、矩阵操作、数组搜索、二叉树遍历、幂运算及概率计算等多种算法题目,并提供了部分题目的Python代码实现。
58 1
|
3月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 2023届校招笔试详解
百度2023届校招机器学习/数据挖掘/自然语言处理工程师笔试的题目详解
80 1
|
3月前
|
分布式计算 并行计算 大数据
【数据挖掘】百度2015大数据云计算研发笔试卷
百度2015年大数据云计算研发笔试卷的题目总结,涵盖了Hadoop、Spark、MPI计算框架特点、TCP连接建立过程、数组最大和问题、二分查找实现以及灯泡开关问题,提供了部分题目的解析和伪代码。
54 1

热门文章

最新文章