【文献学习】Conformer: Convolution-augmented Transformer for Speech Recognition

简介: 文章介绍了Conformer模型,这是一种结合了Transformer的自注意力机制和CNN卷积模块的混合模型,旨在提高语音识别任务的性能,通过自注意力捕捉全局上下文信息,同时利用卷积模块有效捕获局部特征。

1 引言

Transformer 模型擅长捕捉基于内容的全局交互,而 CNN 则有效地利用了局部特征。

2 介绍

Transformer 擅长对远程全局上下文进行建模,但它们提取细粒度局部特征模式的能力较差。本文提出将self-Attention与卷积有机结合的方法,自注意力学习全局交互,而卷积有效地捕获基于相对偏移的局部相关性。

3 Conformer模型

1.png

Conformer 模块由四个模块堆叠在一起组成,即前馈模块、自注意力模块、卷积模块和最后的第二前馈模块。实验对比,在 Conformer 架构中使用单个前馈模块相比,拥有两个前馈层将注意力和卷积模块夹在中间效果更好。在 self-attention 模块之后堆叠的卷积模块最适合语音识别。

3.1 Muti-Headed Self-Attention 模块

2.png

这种self-attention 来源于Transformer-XL ,相对正弦位置编码方案。 相对位置编码允许自注意力模块在不同的输入长度上更好地泛化,并且得到的编码器对话语长度的变化更加鲁棒。 使用带有 dropout 的 prenorm 残差单元 ,这有助于训练和规范更深的模型。在 pre-norm 残差单元中使用具有相对位置嵌入的多头自注意力。

3.2 卷积模块

3.png

卷积模块包含一个扩展因子为 2 的pointwise卷积,通过 GLU 激活层投影通道数,然后是一维depthwise 卷积后面是 Batchnorm,然后是 swish 激活层。Batchnorm 在卷积之后立即部署,以帮助训练深度模型

3.3 Feed forward 前馈模块

4.png

由两个线性变换和中间的非线性激活组成。 在前馈层上添加一个残差连接,然后是layernorm。

4 实验分析

略:本人只对模型感兴趣,只阅读了模型部分

5 疑问和思考

● 代码是Pytorch写的,不知道Keras能不能使用。https://github.com/lucidrains/conformer?utm\_source=catalyzex.com
● 如何把该模型应用到信号处理领域,是我需要研究的问题。

目录
相关文章
|
机器学习/深度学习 编解码 自然语言处理
Vision Transformer 必读系列之图像分类综述(二): Attention-based(上)
Transformer 结构是 Google 在 2017 年为解决机器翻译任务(例如英文翻译为中文)而提出,从题目中可以看出主要是靠 Attention 注意力机制,其最大特点是抛弃了传统的 CNN 和 RNN,整个网络结构完全是由 Attention 机制组成。为此需要先解释何为注意力机制,然后再分析模型结构。
733 0
Vision Transformer 必读系列之图像分类综述(二): Attention-based(上)
|
2月前
|
机器学习/深度学习 算法 TensorFlow
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
本文探讨了使用复数卷积神经网络进行MRI图像重建的方法,强调了复数网络在保留相位信息和减少参数数量方面的优势,并通过实验分析了不同的复数激活函数、网络宽度、深度以及结构对模型性能的影响,得出复数模型在MRI重建任务中相对于实数模型具有更优性能的结论。
26 0
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
|
5月前
|
机器学习/深度学习 数据可视化 TensorFlow
[transformer]论文实现:Attention Is All You Need(上)
[transformer]论文实现:Attention Is All You Need(上)
40 2
|
5月前
|
机器学习/深度学习 并行计算 数据可视化
[transformer]论文实现:Attention Is All You Need(下)
[transformer]论文实现:Attention Is All You Need(下)
53 2
|
机器学习/深度学习 编解码 自然语言处理
Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation论文解读
在过去的几年中,卷积神经网络(CNN)在医学图像分析方面取得了里程碑式的进展。特别是基于U型结构和跳跃连接的深度神经网络在各种医学图像任务中得到了广泛的应用。
647 0
|
机器学习/深度学习 PyTorch 测试技术
SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation 论文解读
我们提出了SegNeXt,一种用于语义分割的简单卷积网络架构。最近的基于transformer的模型由于在编码空间信息时self-attention的效率而主导了语义分割领域。在本文中,我们证明卷积注意力是比transformer中的self-attention更有效的编码上下文信息的方法。
374 0
|
机器学习/深度学习 数据挖掘 Go
深度学习论文阅读图像分类篇(五):ResNet《Deep Residual Learning for Image Recognition》
更深的神经网络更难训练。我们提出了一种残差学习框架来减轻 网络训练,这些网络比以前使用的网络更深。我们明确地将层变为学 习关于层输入的残差函数,而不是学习未参考的函数。我们提供了全 面的经验证据说明这些残差网络很容易优化,并可以显著增加深度来 提高准确性。在 ImageNet 数据集上我们评估了深度高达 152 层的残 差网络——比 VGG[40]深 8 倍但仍具有较低的复杂度。这些残差网络 的集合在 ImageNet 测试集上取得了 3.57%的错误率。这个结果在 ILSVRC 2015 分类任务上赢得了第一名。我们也在 CIFAR-10 上分析 了 100 层和 1000 层的残差网络。
230 0
|
机器学习/深度学习 存储 编解码
深度学习论文阅读图像分类篇(一):AlexNet《ImageNet Classification with Deep Convolutional Neural Networks》
 我们训练了一个大型深度卷积神经网络来将 ImageNet LSVRC2010 竞赛的 120 万高分辨率的图像分到 1000 不同的类别中。在测试数据上,我们得到了 top-1 37.5%和 top-5 17.0%的错误率,这个结果比目前的最好结果好很多。
369 0
|
机器学习/深度学习 编解码 数据挖掘
深度学习论文阅读图像分类篇(三):VGGNet《Very Deep Convolutional Networks for Large-Scale Image Recognition》
在这项工作中,我们研究了卷积网络深度在大规模的图像识别环境下对准确性的影响。我们的主要贡献是使用非常小的(3×3)卷积滤波器架构对网络深度的增加进行了全面评估,这表明通过将深度推到 16-19 加权层可以实现对现有技术配置的显著改进。这些发现是我们的 ImageNet Challenge 2014 提交论文的基础,我们的团队在定位和分类过程中分别获得了第一名和第二名。我们还表明,我们的表示对于其他数据集泛化的很好,在其它数据集上取得了最好的结果。
184 0
|
机器学习/深度学习 大数据
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization
132 0
【文本分类】Deep Pyramid Convolutional Neural Networks for Text Categorization