【文献学习】RoemNet: Robust Meta Learning based Channel Estimation in OFDM Systems

简介: 本文提出了一种基于元学习的鲁棒信道估计算法RoemNet,旨在解决OFDM系统中由于训练和部署信道模型不一致导致的问题,并展示了其在不同信道环境下优越的性能。

1 引言

(1)针对DL网络的缺点:离线训练和在线部署的信道模型不一致会带来模型不可靠问题。提出了基于元学习的信道估计方法RoemNet。
(2)RoemNet的最大特色是它包含一个元学习者,可以从不同信道的环境中学习。
(3)随着元学习器的更新,RoemNet足够强大,可以仅使用少量导频来解决新的信道学习任务,从而解决在线部署与训练阶段使用的信道模型不一致的情况。
(4)此外,RoemNet可以减轻多普勒扩展的影响,并显著提高不同信道环境下的误码率性能。

2 介绍

(1)LS缺点:它具有较高的均方误差率,并且容易受到噪声和载波间干扰(ICI)的影响
(2)MMSE:理想的MMSE算法比LS估计器有更好的性能,但是它具有很高的计算复杂度。
(3)深度学习模型缺点

《Ofdm- autoencoder for end-to-end learning of communications systems》一旦部署了网络,自动编码器的权重就保持不变。 这使得很难补偿实际信道条件的不匹配或波动。
《Power of deep learning for channel estimation and signal detection in ofdm systems》在数据驱动中,需要训练大量的参数。这种基于深度学习的方法仍不适合随时间变化的无线多径衰落环境中的实际传输

(4)作者的Meta-learning来源于

《Dynamic core competences through meta-learning and strategic context》
《A perspective view and survey of meta-learning,” Artificial Intelligence Review》

3 模型

将信道估计问题公式化为具有元学习的K个样本恢复问题,类似于机器学习中的小样本学习问题。ROMNet划分为三部分

1.png

3.1 第一部分

训练一个元网络来学习典型信道类型的一般特征。 它的参数不是通过传统的有监督学习方法随机初始化的,而是通过元学习器的方法来学习的

3.2 第二部分

在时变信道上从OFDM系统发送和接收帧。 一帧数据中包含导频和信息。 将发送和接收端的导频分别保存为元网络的输入和输出,以进行进一步调整。

3.3 第三部分

RoemNet使用收集的数据来更新参数,并通过执行随机梯度下降SGD的某些步骤来微调之前的网络

3.4 关键原理

(1)能够适应新信道的关键原理
当面对未知信道时,RoemNet可以使用K个导频通过K-shot SGD对网络进行微调。 RoemNet的核心是训练初始化参数,并借助新任务中的少量数据,通过几个渐变步骤来更新它们,以便在合适的空间进行调整,以便在新信道上快速学习。
(2)梯度更新原理
在训练期间,传统的基于标准监督学习的神经玩过每当出现梯度下降时都会更新参数。 但是RoemNet会首先使用公式

2.png

计算所有损失函数的梯度。 接下来才根据求出来的此梯度更新参数,RoemNet就可以找到一组合适的初始参数,这些参数对于参数空间中的不同信道任务具有最佳的泛化能力
(3)ROMNet中的DNN网络
DNN由五层组成,其中三层是大小为64、128、64的隐藏层,使用RElu激活函数

4 模型参数

4.1 DNN网络参数

导频数量K1=64
初始步长 α1 = 0.003 ,固定步长α2 = 0.001
Adam优化器

4.2 训练参数

3.png

4.3 多径信道参数

4.png

5 实验分析

(1)ROMNet比LS、MMSE算法效果好,原因是通道对失真的影响是非线性的,并且难以分析和公式化。而RoemNet使用深度学习网络,使其对无线多径衰落信道不敏感。
(2)由于插入导频将导致能量转移,因此在导频辅助的OFDM系统中,最佳导频估计方案应使用最少数量的导频.相比传统算法,ROMNet仍然具有鲁棒性
(3)对比纯DNN网络,RomNet的MSE远远低于DNN,原因是RomNet经过元训练的参数位于损失函数敏感的区域中。

6 疑问和思考

(1)元学习器的原理,作者是通过伪代码介绍的原理,没有看明白,需要阅读一下首次提出Meta-learning的论文和源码。
相关Meta-learning的文献

【Learning to Demodulate from Few Pilots via Offline and Online Meta-Learning】
IEEE Transactions on Signal Processing
论文地址
源码

[Meta-Learning to Communicate: Fast End-to-End Training for Fading Channels]
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
论文地址
源码

《Dynamic core competences through meta-learning and strategic context》
《A perspective view and survey of meta-learning,” Artificial Intelligence Review》

(2)ROMNet的具体结构,作者没有详细介绍,ROMNet中DNN结构是五层,只提了一下前三层的神经元个数和使用的激活函数,就没有再介绍,所以复现是不太可能
(3)根据我的理解,对于ROMNet能够适应新的信道,是线下训练能适应不同的信道,意思是说不用替换网络,更换了信道后,用该信道的数据训练网络后,也能实现很好解调效果。

目录
打赏
0
5
5
0
150
分享
相关文章
【文献学习】Deep Learning for Joint Channel Estimation and Signal Detection in OFDM Systems
该文章提出了一种基于深度学习的方法,用于OFDM系统中的联合信道估计和信号检测,通过信道估计网络(CENet)和信号检测网络(CCRNet)改善了传统方法的性能。
97 2
【文献学习】Model-Driven Channel Estimation for OFDM Systems Based on Image SuperResolution Network
本文介绍了一种基于图像超分辨率网络的OFDM系统模型驱动信道估计算法,通过结合最小二乘法和深度学习技术来提高信道估计的准确性。
54 6
【文献学习】 ComNet: Combination of Deep Learning andExpert Knowledge in OFDM Receiver
本文提出了一种模型驱动的DL结构,称为ComNet,以取代传统的或FC-DNN的OFDM接收机。
60 1
【文献学习】2 Power of Deep Learning for Channel Estimation and Signal Detection in OFDM
研究成果是:如果有足够的导频,则深度学习模型可以获得与传统方法相当的性能,但是在有限的导频、去除CP和非线性噪声下,深度学习模型更优。
92 1
【推荐系统论文精读系列】(十四)--Information Fusion-Based Deep Neural Attentive Matrix Factorization Recommendation
推荐系统的出现,有效地缓解了信息过载的问题。而传统的推荐系统,要么忽略用户和物品的丰富属性信息,如用户的人口统计特征、物品的内容特征等,面对稀疏性问题,要么采用全连接网络连接特征信息,忽略不同属性信息之间的交互。本文提出了基于信息融合的深度神经注意矩阵分解(ifdnamf)推荐模型,该模型引入了用户和物品的特征信息,并采用不同信息域之间的交叉积来学习交叉特征。此外,还利用注意机制来区分不同交叉特征对预测结果的重要性。此外,ifdnamf采用深度神经网络来学习用户与项目之间的高阶交互。同时,作者在电影和图书这两个数据集上进行了广泛的实验,并证明了该模型的可行性和有效性。
330 0
【推荐系统论文精读系列】(十四)--Information Fusion-Based Deep Neural Attentive Matrix Factorization Recommendation
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
172 0
论文笔记之:Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach
Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach  2017.11.28    Introduction:   人脸属性的识别在社会交互,提供了非常广泛的信息,包括:the person’s ...
【文献学习】Exploring Deep Complex Networks for Complex Spectrogram Enhancement
介绍了一种用于语音增强的复数深度神经网络(CDNN),它通过复数值的短时傅立叶变换(STFT)映射到干净的STFT,并提出了参数整流线性单位(PReLU)的复数扩展,实验结果表明CDNN在语音增强方面相对于实值深层神经网络(DNN)具有更好的性能。
64 2
【文献学习】Exploring Deep Complex Networks for Complex Spectrogram Enhancement

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等