【机器学习】解决机器学习中OneVsRestClassifier的网格调参Invalid parameter max_depth for estimator OneVsRestClassifier

简介: 文章介绍了如何使用XGBClassifier和OneVsRestClassifier进行网格搜索调参,以找到最佳的模型参数。

简单模型网格调参

from xgboost import XGBClassifier
from sklearn.multiclass import OneVsRestClassifier
from sklearn.model_selection import train_test_split,GridSearchCV
param_test1 = {'max_depth':range(3,10,2),'min_child_weight':range(1,6,2)}

model = XGBClassifier(eval_metric= 'mlogloss',
                                        use_label_encoder=False,
                                        learning_rate =0.1,
                                        n_estimators=100,
                                        gamma=0,
                                        subsample=0.8,
                                        colsample_bytree=0.8,
                                        nthread=4,
                                        scale_pos_weight=1,
                                        seed=27,
                                        verbose=True)
gsearch1 = GridSearchCV(model,param_grid = param_test1,scoring='roc_auc',n_jobs=20, cv=5,verbose=2)
gsearch1.fit(X_train, y_train)
print("最佳参数\n",gsearch1.best_params_)
print("最佳得分",gsearch1.best_score_)

使用OneVsRestClassifier的调参

需要在每个参数面前加上estimator__

param_test1 = {'estimator__max_depth':range(3,10,2),'estimator__min_child_weight':range(1,6,2)}

model = OneVsRestClassifier(XGBClassifier(eval_metric= 'mlogloss',
                                        use_label_encoder=False,
                                        learning_rate =0.1,
                                        n_estimators=100,
                                        gamma=0,
                                        subsample=0.8,
                                        colsample_bytree=0.8,
                                        nthread=4,
                                        scale_pos_weight=1,
                                        seed=27,
                                        verbose=True))
    gsearch1 = GridSearchCV(model,param_grid = param_test1,scoring='roc_auc',n_jobs=20, cv=5,verbose=2)
    gsearch1.fit(X_train, y_train)
print("最佳参数\n",gsearch1.best_params_)
print("最佳得分",gsearch1.best_score_)
目录
相关文章
|
机器学习/深度学习 分布式计算 自然语言处理
Spark机器学习管道 - Estimator
Spark机器学习管道 - Estimator
|
机器学习/深度学习 存储 负载均衡
分布式机器学习(Parameter Server)
分布式机器学习(Parameter Server)
377 0
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
13天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
102 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面

热门文章

最新文章