通义大模型百炼融合AnalyticDB, 阿里云专家手把手带你10分钟创建网站AI助手

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 本次陪跑班将从一个企业开发者的角度出发,手把手带你用AnalyticDB for PostgreSQL的高效向量引擎与阿里云自主研发的通义大模型服务平台百炼,只需10分钟即可为您的网站添加一个AI助手。加入钉群观看直播课程,更有精彩好礼等你拿!

简述

阿里云百炼是基于通义大模型、行业大模型以及三方大模型的一站式大模型开发平台。面向企业客户和个人开发者,提供完整的模型服务工具和全链路应用开发套件,预置丰富的能力插件,提供API及SDK等便捷的集成方式,高效完成大模型应用构建。


阿里云百炼结合AnalyticDB PostgreSQL版高性能向量检索引擎,使得企业可在平台上构建企业专属知识库,让大模型具备私域知识。


本次陪跑班将从一个企业开发者的角度出发,手把手带你用AnalyticDB for PostgreSQL的高效向量引擎与阿里云自主研发的通义大模型服务平台百炼,只需10分钟即可为您的网站添加一个AI助手。


实验地址:https://help.aliyun.com/zh/model-studio/use-cases/add-an-ai-assistant-to-your-website-in-10-minutes

陪跑班免费报名https://developer.aliyun.com/topic/yunduanwendao/database12

前提条件

进入实操前,请确保阿里云账号满足以下条件:

1. 完成阿里云实名认证(个人或企业均可):https://account.console.aliyun.com/v2#/authc/home

2. 阿里云账户余额大于100元(完成整个体验花几块钱 ,其余活动结束可提现):https://billing-cost.console.aliyun.com/home

开班时间

2024年8月2日 14:00 - 16:00 钉群内直播

方案概览

在网站中引入一个 AI 助手,只需 4 步:

  1. 创建大模型问答应用:我们将先通过百炼创建一个大模型应用,并获取调用大模型应用 API 的相关凭证。
  2. 搭建示例网站:然后我们将通过函数计算,来快速搭建一个网站,模拟您的企业官网或者其他站点。
  3. 引入 AI 助手:接着我们将通过修改几行代码,实现在网站中引入一个 AI 助手。
  4. 增加私有知识:最后可以通过准备一些私有知识,让 AI 助理能回答原本无法准确回答的问题,帮助您更好的应对客户咨询。选择向量存储类型时,如果您希望集中存储、灵活管理多个应用的向量数据,可选择ADB-PG


⏰请大家合理安排时间,提前预留好时间

学习福利

报名后加入学习钉群领福利!完成报名问卷、实操体验和满意度调研问卷即可领取云豆杯,直播期间还有抢答礼物赠送!


请在钉钉搜索群号「69120019411 」或扫描下方海报二维码加入群聊观看直播,我们不见不散!


相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
9天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
75 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
14天前
|
人工智能 数据库 自然语言处理
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
「拥抱Data+AI」系列文章由阿里云瑶池数据库推出,基于真实客户案例,展示Data+AI行业解决方案。本文通过钉钉AI助理的实际应用,探讨如何利用阿里云Data+AI解决方案实现智能问数服务,使每个人都能拥有专属数据分析师,显著提升数据查询和分析效率。点击阅读详情。
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
|
19天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
72 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
21天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
62 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
21天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
60 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
25天前
|
人工智能 编解码 网络架构
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
147 14
GenCast:谷歌DeepMind推出的AI气象预测模型
|
24天前
|
机器学习/深度学习 人工智能 编解码
【AI系统】Transformer 模型小型化
本文介绍了几种轻量级的 Transformer 模型,旨在解决传统 Transformer 参数庞大、计算资源消耗大的问题。主要包括 **MobileVit** 和 **MobileFormer** 系列,以及 **EfficientFormer**。MobileVit 通过结合 CNN 和 Transformer 的优势,实现了轻量级视觉模型,特别适合移动设备。MobileFormer 则通过并行结构融合了 MobileNet 和 Transformer,增强了模型的局部和全局表达能力。
58 8
【AI系统】Transformer 模型小型化
|
22天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
40 5
【AI系统】模型转换流程
|
26天前
|
机器学习/深度学习 存储 人工智能
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。
39 9
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
|
22天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
50 4
【AI系统】模型转换基本介绍

相关产品

  • 云原生数据仓库AnalyticDB MySQL版