国内大模型LLM选择以及主流大模型快速使用教程[GLM4/Qwen/Baichuan/Coze/Kimi]

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【7月更文挑战第7天】国内大模型LLM选择以及主流大模型快速使用教程[GLM4/Qwen/Baichuan/Coze/Kimi]

国内大模型LLM选择以及主流大模型快速使用教程[GLM4/Qwen/Baichuan/Coze/Kimi]

0. 大模型选择

司南测评结果:

SuperCLue测评结果:

自2023年5月以来,全球及中国国内的大模型技术均展现出了强劲的发展势头,尤其是以GPT系列为代表的海外顶尖模型,历经了从GPT3.5到GPT4、GPT4-Turbo乃至GPT4o的多次迭代飞跃,持续推动AI技术的边界。与此同时,中国本土的大模型领域也经历了长达14个月的激烈竞争与快速进化,期间顶尖模型之位更迭了八次,彰显出国内技术实力的显著提升与不懈追求。

从宏观趋势来看,国内外顶尖大模型在中文处理能力上的差距正显著缩小。这一变化尤为引人注目,从2023年5月时高达30.12%的差距,到2024年6月已缩减至仅4.94%,标志着国内外大模型在中文通用能力上正逐步走向并驾齐驱的新阶段。这一成就不仅反映了中国AI技术的快速崛起,也预示着全球AI领域更加紧密的竞争与合作格局正在形成。

0.1 常见评估维度

0.2 国内外大模型发展态势

  • 开源榜单

0.3 大模型评分细则

更多内容参考:SuperCLue官网

0.4 大模型选择几个维度:

  1. 开源闭源大模型选择:数据安全、Token成本,GPU成本
  2. 项目是否需要调用工具:ToolCall 工具微调
  3. 项目精度要求:准确度、专业、降本增效、情绪价值
    • ToC:给用户提供更多情绪价值
    • ToB:专业,精准
  4. 国内外大模型选择:数据安全、成本、速度、目标用户
  • 使用开源大模型还是闭源大模型:如果你的应用和数据希望更加私有化,比较敏感不希望共享给大模型公司,那么你只有选择开源模型,并使用自托管的方式来运作;如果你的应用对数据敏感度不高,则可以选择闭源大模型;此外,截止到目前整体而言,闭源大模型,尤其是国外的闭源模型,其能力还是要胜过开源大模型的。
  • AI应用是否需要类似工具调用能力: 如果你在开发类似AI Agents这一类应用,那么你需要使用针对tool call做过微调的模型,这类大模型可以识别和使用外部工具,通过function call之类来实现像GPTs那样的效果。要注意并不是所有的LLM都做了类似的微调。
  • 应用对精度的要求高低:参数越大、能力越强,7B和70B的差距就像小学生和大学生的差距一样,但是并不是所有的应用都需要大参数的大模型,比如你的应用只是简单的做一些文本处理工作,那么可能7B的部署成本和响应速度要比70B好很多。
  • 使用国内还是国外的LLM:取决于你的应用的部署,一般来说部署在国内的应用,调用国外的大模型接口也是没问题的,但是在注册、充值等方面可能面临问题。另外在头部的大模型领域,目前整体国外大模型要优于国内,所以,一切取决于对于成本、效果的权衡。

0.5 LLM能力(结构化输出、异步调用、流式调用、批处理等)

从模型是否支持工具调用、结构化输出、JSON、本地化部署这几个维度,可以看到目前langchain社区的支持情况:

从模型是否支持普通调用、异步调用、流式调用、异步流调用、批处理和异步批处理,又可以将主流大模型再次分类。可以看到国内做的最好的是阿里通义千问

1.GLM4和通义千问实践

更多细节参考文章:初识langchain[1]:Langchain实战教学,利用qwen2.1与GLM-4大模型构建智能解决方案

1.1 普通调用

from getpass import getpass

DASHSCOPE_API_KEY = getpass()
import os

os.environ["DASHSCOPE_API_KEY"] = "sk61"

from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage

chatLLM = ChatTongyi(streaming=True, )

from langchain_core.messages import HumanMessage, SystemMessage

messages = [
    SystemMessage(
        content=
        "You are a helpful assistant that translates English to Chinese."),
    HumanMessage(
        content=
        "Translate this sentence from English to Chinese. I love programming."
    ),
]
res = chatLLM(messages)
print(res)

1.2 通义千问支持Tools Calling

from getpass import getpass

DASHSCOPE_API_KEY = getpass()
import os

os.environ["DASHSCOPE_API_KEY"] = "sk-"

from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool


@tool
def multiply(first_int: int, second_int: int) -> int:
    """Multiply two integers together."""
    return first_int * second_int


llm = ChatTongyi(model="qwen-turbo")

llm_with_tools = llm.bind_tools([multiply])

msg = llm_with_tools.invoke("5乘以32的结果是多少?").tool_calls

print(msg)
  • 输出结果 得到了入参
    [{
         
         'name': 'multiply', 'args': {
         
         'first_int': 5, 'second_int': 32}, 'id': '', 'type': 'tool_call'}]
    

1.3 将工具结果输入给大模型

from langchain_core.messages import HumanMessage, ToolMessage

messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)
for tool_call in ai_msg.tool_calls:
    selected_tool = {
   
   "add": add, "multiply": multiply}[tool_call["name"].lower()]
    tool_output = selected_tool.invoke(tool_call["args"])
    messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
messages
#完整代码
from getpass import getpass

DASHSCOPE_API_KEY = getpass()
import os

os.environ["DASHSCOPE_API_KEY"] = "sk-"

from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, ToolMessage


@tool
def multiply(first_int: int, second_int: int) -> int:
    """Multiply two integers together."""
    return first_int * second_int

tools=[multiply]
llm = ChatTongyi(model="qwen-turbo")

llm_with_tools = llm.bind_tools(tools)


query="what is 3*12?"

messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)
for tool_call in ai_msg.tool_calls:
    selected_tool = {
   
   "multiply": multiply}[tool_call["name"].lower()]
    tool_output = selected_tool.invoke(tool_call["args"])
    messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))


print(messages)
  • 结果输出
    [HumanMessage(content='what is 3*12?'), AIMessage(content='', additional_kwargs={
         
         'tool_calls': [{
         
         'function': {
         
         'name': 'multiply', 'arguments': '{"first_int": 3, "second_int": 12}'}, 'id': '', 'type': 'function'}]}, response_metadata={
         
         'model_name': 'qwen-turbo', 'finish_reason': 'tool_calls', 'request_id': '941b5989-73fc-9d7b-a010-d63772296db2', 'token_usage': {
         
         'input_tokens': 187, 'output_tokens': 25, 'total_tokens': 212}}, id='run-58c2c22b-46fd-4d61-a1e9-9b4d1b2e4ec2-0', tool_calls=[{
         
         'name': 'multiply', 'args': {
         
         'first_int': 3, 'second_int': 12}, 'id': '', 'type': 'tool_call'}]), ToolMessage(content='36', tool_call_id='')]
    

1.4 多模态(qwen-vl-max)能力

qwen-vl-max模型具备多模态能力,这里我们使用它来识别一张图片并对图片做出描述,图片如下

from langchain_community.chat_models import ChatTongyi
from langchain_core.messages import HumanMessage

chatLLM = ChatTongyi(model_name="qwen-vl-max")
image_message = {
   
   
    "image": "https://ai-studio-static-online.cdn.bcebos.com/ea894a305d714a1790df1282975b01be0532f2b81f6f4860abda0c5eeb1f1211",
}
text_message = {
   
   
    "text": "summarize this picture",
}
message = HumanMessage(content=[text_message, image_message])
chatLLM.invoke([message])
  • 结果输出
AIMessage(content=[{'text': "The image presents an abstract representation of the Agent, which serves as the central hub for various cognitive processes and tools. The Agent is connected to both short-term memory and long-term memory, indicating its role in integrating past experiences and immediate perceptions.\n\nFrom the Agent, several tools branch out, including Calendar(), Calculator(), CodeInterpreter(), Search(), and more, suggesting that it can leverage various resources to accomplish tasks. Additionally, the Agent engages in planning by connecting back to itself through a feedback loop.\n\nSelf-reflection plays a crucial role in the Agent's operation, as indicated by its connections with self-critics. Furthermore, the Agent exhibits problem-solving abilities through its chain of thoughts, subgoal decomposition, and the use of external tools like Code Interpreter(). Overall, the Agent appears to be a highly adaptable and resourceful entity that integrates various cognitive functions and external aids to navigate complex environments or solve problems."}], response_metadata={'model_name': 'qwen-vl-max', 'finish_reason': 'stop', 'request_id': '557f9c6b-dacd-9aa1-ade2-f617453d3474', 'token_usage': {'input_tokens': 1264, 'output_tokens': 181, 'image_tokens': 1232}}, id='run-a39305d2-7c17-402f-bbd4-960d815ae55e-0')

2.月之暗面(Kimi )

Moonshot的文本生成模型(指moonshot-v1)是训练用于理解自然语言和书面语言的,它可以根据输入生成文本输出。对模型的输入也被称为“prompt”。通常我们建议您提供明确的指令以及给出一些范例,来让模型能够完成既定的任务,设计 prompt 本质上就是学会如何“训练”模型。moonshot-v1模型可以用于各种任务,包括内容或代码生成、摘要、对话、创意写作等。

API申请:https://platform.moonshot.cn/console/api-keys
使用手册:https://platform.moonshot.cn/docs/intro#%E4%B8%BB%E8%A6%81%E6%A6%82%E5%BF%B5

  • 支持的模型有:
    • moonshot-v1-8k: 它是一个长度为 8k 的模型,适用于生成短文本。
    • moonshot-v1-32k: 它是一个长度为 32k 的模型,适用于生成长文本。
    • moonshot-v1-128k: 它是一个长度为 128k 的模型,适用于生成超长文本。

2.1 langchain使用方式

import os
from langchain_community.chat_models.moonshot import MoonshotChat
from langchain_core.messages import HumanMessage, SystemMessage
#Generate your api key from: https://platform.moonshot.cn/console/api-keys
os.environ["MOONSHOT_API_KEY"] = "MOONSHOT_API_KEY"
chat = MoonshotChat()
#or use a specific model
#Available models: https://platform.moonshot.cn/docs
#chat = MoonshotChat(model="moonshot-v1-128k")
messages = [
    SystemMessage(
        content="You are a helpful assistant that translates English to French."
    ),
    HumanMessage(
        content="Translate this sentence from English to French. I love programming."
    ),
]

chat.invoke(messages)

2.2 单论对话

from openai import OpenAI

client = OpenAI(
    api_key = "$MOONSHOT_API_KEY",
    base_url = "https://api.moonshot.cn/v1",
)

completion = client.chat.completions.create(
    model = "moonshot-v1-8k",
    messages = [
        {
   
   "role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"},
        {
   
   "role": "user", "content": "你好,我叫李雷,1+1等于多少?"}
    ],
    temperature = 0.3,
)

print(completion.choices[0].message.content)

2.3 多轮对话

from openai import OpenAI

client = OpenAI(
    api_key = "$MOONSHOT_API_KEY",
    base_url = "https://api.moonshot.cn/v1",
)

history = [
    {
   
   "role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"}
]

def chat(query, history):
    history.append({
   
   
        "role": "user", 
        "content": query
    })
    completion = client.chat.completions.create(
        model="moonshot-v1-8k",
        messages=history,
        temperature=0.3,
    )
    result = completion.choices[0].message.content
    history.append({
   
   
        "role": "assistant",
        "content": result
    })
    return result

print(chat("地球的自转周期是多少?", history))
print(chat("月球呢?", history))

3. 百川智能

官网:https://platform.baichuan-ai.com/homePage

  • baichuan4:模型能力国内第一,在知识百科、长文本、生成创作等中文任务上超越国外主流模型。还具备行业领先的多模态能力,多项权威评测基准表现优异。[Search Agent
    /长窗口/多模态]

  • Baichuan3-Turbo:针对企业高频场景优化,效果大幅提升,高性价比。相对于Baichuan2模型,内容创作提升20%,知识问答提升17%, 角色扮演能力提升40%。整体效果比GPT3.5更优。[企业场景优化
    /强化学习/中英双语]

from langchain_community.chat_models import ChatBaichuan
from langchain_core.messages import HumanMessage
chat = ChatBaichuan(baichuan_api_key="sk-")
#也可以使用192K开启流式输出
#chat = ChatBaichuan(
#baichuan_api_key="YOUR_API_KEY",
#streaming=True,
#)
chat([HumanMessage(content="结合北京市发展情况,编写《北京商务发展报告2023》的提纲。")])
  • 输出结果

    AIMessage(content='《北京商务发展报告2023》提纲\n\n一、引言\n   1. 报告背景\n   2. 报告目的与意义\n   3. 数据来源与研究方法\n\n二、北京市商务发展概况\n   1. 北京市经济发展总体情况\n   2. 北京市商务发展主要指标分析\n   3. 北京市商务发展特点与趋势\n\n三、北京市重点行业商务发展分析\n   1. 金融业\n       1.1 北京市金融业发展现状\n       1.2 北京市金融业发展特点与趋势\n       1.3 北京市金融业发展前景展望\n   2. 高新技术产业\n       2.1 北京市高新技术产业发展现状\n       2.2 北京市高新技术产业发展特点与趋势\n       2.3 北京市高新技术产业发展前景展望\n   3. 现代物流业\n       3.1 北京市现代物流业发展现状\n       3.2 北京市现代物流业发展特点与趋势\n       3.3 北京市现代物流业发展前景展望\n   4. 其他重点行业(如旅游业、文化创意产业等)\n\n四、北京市商务发展政策环境分析\n   1. 北京市商务发展政策环境概述\n   2. 北京市商务发展政策环境对行业发展的影响分析\n   3. 北京市商务发展政策环境展望\n\n五、北京市商务发展区域布局分析\n   1. 北京市商务发展区域布局现状\n   2. 北京市商务发展区域布局特点与趋势\n   3. 北京市商务发展区域布局展望\n\n六、北京市商务发展面临的挑战与机遇\n   1. 北京市商务发展面临的挑战\n   2. 北京市商务发展面临的机遇\n   3. 北京市商务发展应对挑战与把握机遇的策略建议\n\n七、北京市商务发展展望\n   1. 北京市商务发展总体展望\n   2. 北京市重点行业商务发展展望\n   3. 北京市商务发展政策环境与区域布局展望\n\n八、结论\n   1. 北京市商务发展主要成果与经验总结\n   2. 对北京市商务发展的建议与展望\n\n九、附录\n   1. 北京市商务发展相关数据汇总\n   2. 北京市商务发展相关政策汇总\n   3. 北京市商务发展相关研究报告与文献汇总', response_metadata={
         
         'token_usage': {
         
         'prompt_tokens': 21, 'completion_tokens': 475, 'total_tokens': 496}, 'model': 'Baichuan2-Turbo-192K'}, id='run-071ed1da-6950-412a-9a60-7216ceb53af0-0')
    
  • 同样问题问baichuan4 其更加专业

请求频率限制当前企业认证账号限制 120 记录/分钟,非企业认证账号为 60 记录/分钟。如果您收到速率限制的报错,则表示您在短时间内发出了太多请求,API 会拒绝新请求,直到经过指定的时间。

4.字节扣子:

官网:https://www.coze.cn/home

Coze 是新一代一站式 AI Bot 开发平台。无论你是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot。而且你可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多的用户与你搭建的 Bot 聊天。Coze 支持将 AI Bot 发布为 API 服务,你可以通过 HTTP 方式与 Bot 进行交互。

  • 无限拓展的能力集
    扣子集成了丰富的插件工具,可以极大地拓展 Bot 的能力边界。
    • 内置插件:目前平台已经集成了近百款各类型的插件,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型。 你可以直接将这些插件添加到 Bot 中,丰富 Bot 能力。例如使用新闻插件,打造一个可以播报最新时事新闻的 AI 新闻播音员。
    • 自定义插件:扣子平台也支持创建自定义插件。 你可以将已有的 API 能力通过参数配置的方式快速创建一个插件让 Bot 调用。
  • 丰富的数据源
    扣子提供了简单易用的知识库功能来管理和存储数据,支持 Bot 与你自己的数据进行交互。无论是内容量巨大的本地文件还是某个网站的实时信息,都可以上传到知识库中。这样,Bot 就可以使用知识库中的内容回答问题了。
    • 内容格式:知识库支持添加文本格式、表格格式、照片格式的数据。
    • 内容上传: 知识库支持 TXT 等本地文件、在线网页数据、Notion 页面及数据库、API JSON 等多种数据源,你也可以直接在知识库内添加自定义数据。

当前扣子 API 免费供开发者使用,每个空间的 API 请求限额如下:

  • QPS (每秒发送的请求数):2
  • QPM (每分钟发送的请求数):60
  • QPD (每天发送的请求数):3000

将以下命令粘贴到终端中以运行你的第一个 API 请求。
在发送请求前,请将示例中的以下参数值替换成真实数据:

  • { {Personal_Access_Token}}:生成的个人访问令牌。点击这里生成令牌。
  • { {Bot_Id}}:Bot ID。进入 Bot 的开发页面,开发页面 URL 中 bot 参数后的数字就是 Bot ID。例如https://www.coze.cn/space/341****/bot/73428668*****,bot ID 为73428668*
    确保 Bot 已发布为 API 服务。详情参考准备工作。
  • { {UserId}}:标识当前与 Bot 交互的用户,由使用方在业务系统中自行定义、生成与维护。
  • { {yourquery}}:发送的消息内容。
curl --location --request POST 'https://api.coze.cn/v3/chat' \
--header 'Authorization: Bearer {
  
  {Personal_Access_Token}}' \
--header 'Content-Type: application/json' \
--data-raw '{
    "bot_id": "{
  
  {Bot_Id}}",
    "user_id": "{
  
  {UserId}}",
    "stream": false,
    "auto_save_history":true,
    "additional_messages":[
        {
            "role":"user",
            "content":"{
  
  {yourquery}}",
            "content_type":"text"
        }
    ]
}'

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
2月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
352 2
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
近年来,大型语言模型(LLMs)在自然语言处理领域取得显著进展,研究人员开始探索将其应用于时间序列预测。Jin等人提出了LLM-Mixer框架,通过多尺度时间序列分解和预训练的LLMs,有效捕捉时间序列数据中的短期波动和长期趋势,提高了预测精度。实验结果显示,LLM-Mixer在多个基准数据集上优于现有方法,展示了其在时间序列预测任务中的巨大潜力。
70 3
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
|
2月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
67 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
19天前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
|
2月前
|
网络安全 开发工具 数据安全/隐私保护
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
49 2
|
23天前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
48 2
|
2月前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
|
2月前
|
人工智能 前端开发
大模型体验体验报告:OpenAI-O1内置思维链和多个llm组合出的COT有啥区别?传统道家理论+中学生物理奥赛题测试,名不虚传还是名副其实?
一个月前,o1发布时,虽然让人提前体验,但自己并未进行测试。近期终于有机会使用,却仍忘记第一时间测试。本文通过两个测试案例展示了o1的强大能力:一是关于丹田及练气的详细解答,二是解决一道复杂的中学生物理奥赛题。o1的知识面广泛、推理迅速,令人印象深刻。未来,或许可以通过赋予o1更多能力,使其在更多领域发挥作用。如果你有好的测试题,欢迎留言,一起探索o1的潜力。

热门文章

最新文章