供需匹配(Demand-Supply Matching)的详细解释与Python代码示例

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
简介: 供需匹配(Demand-Supply Matching)的详细解释与Python代码示例

供需匹配(Demand-Supply Matching)的详细解释与Python代码示例

在供应链管理和经济学中,供需匹配(Demand-Supply Matching)是一个至关重要的概念。它指的是在特定市场或系统中,确保供应(Supply)与需求(Demand)之间达到平衡或接近平衡的状态。这种平衡对于保持价格稳定、优化库存水平、提高客户满意度和降低运营成本等方面都具有重要意义。

供需匹配的重要性

供需匹配是供应链管理的核心目标之一。当供应超过需求时,可能会导致库存积压、资金占用和商品贬值;而当需求超过供应时,则可能引发缺货、客户满意度下降和市场份额损失。因此,通过有效的供需匹配策略,企业可以更加精准地预测市场需求,合理安排生产计划,优化库存水平,从而提高整个供应链的效率和效益。

Python代码示例:供需匹配模型

以下是一个简单的Python代码示例,用于模拟供需匹配的过程。该示例使用遗传算法(Genetic Algorithm)来求解供需匹配问题,通过不断迭代和优化,找到最佳的供需匹配方案。

```python
import random

定义供需匹配问题的基因类

class Gene:
def init(self, supply, demand):
self.supply = supply # 供应列表
self.demand = demand # 需求列表
self.match = [0] * len(demand) # 匹配结果列表,0表示未匹配,1表示已匹配

# 计算基因适应度(即供需匹配程度)
def fitness(self):
    # 假设适应度为已匹配的需求数量
    return sum(self.match)

定义遗传算法类

class GA:
def init(self, genes, pop_size, mutation_rate, num_generations):
self.genes = genes # 基因列表
self.pop_size = pop_size # 种群大小
self.mutation_rate = mutation_rate # 变异率
self.num_generations = num_generations # 迭代次数

# 初始化种群
def initialize_population(self):
    population = []
    for _ in range(self.pop_size):
        gene = Gene(self.genes[0].supply, self.genes[0].demand)
        # 随机生成初始匹配结果
        for i in range(len(gene.demand)):
            if random.random() < 0.5:
                gene.match[i] = 1
        population.append(gene)
    return population

# 遗传算法主循环
def run(self):
    population = self.initialize_population()
    for generation in range(self.num_generations):
        # 选择操作(此处省略)
        # 交叉操作
        new_population = []
        for i in range(0, len(population), 2):
            parent1, parent2 = population[i], population[i+1]
            child = self.crossover(parent1, parent2)
            new_population.append(child)
        # 变异操作
        for gene in new_population:
            self.mutate(gene)
        # 更新种群(此处省略选择操作,直接更新)
        population = new_population

        # 输出当前代的最优解(适应度最高的基因)
        best_gene = max(population, key=lambda x: x.fitness())
        print(f"Generation {generation}: Best Fitness = {best_gene.fitness()}")

# 交叉操作(简单示例,仅随机选择一位进行交叉)
def crossover(self, gene1, gene2):
    child = Gene(gene1.supply, gene1.demand)
    crossover_point = random.randint(1, len(child.match) - 1)
    child.match = gene1.match[:crossover_point] + gene2.match[crossover_point:]
    return child

# 变异操作(简单示例,随机翻转匹配结果)
def mutate(self, gene):
    for i in range(len(gene.match)):
        if random.random() < self.mutation_rate:
            gene.match[i] = 1 - gene.match[i]
相关文章
|
3月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
648 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
3月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
|
1月前
|
SQL 数据库 开发者
Python中使用Flask-SQLAlchemy对数据库的增删改查简明示例
这样我们就对Flask-SQLAlchemy进行了一次简明扼要的旅程,阐述了如何定义模型,如何创建表,以及如何进行基本的数据库操作。希望你在阅读后能对Flask-SQLAlchemy有更深入的理解,这将为你在Python世界中从事数据库相关工作提供极大的便利。
192 77
|
3月前
|
XML JSON API
淘宝商品详情API的调用流程(python请求示例以及json数据示例返回参考)
JSON数据示例:需要提供一个结构化的示例,展示商品详情可能包含的字段,如商品标题、价格、库存、描述、图片链接、卖家信息等。考虑到稳定性,示例应基于淘宝开放平台的标准响应格式。
|
8天前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
200行python代码实现从Bigram模型到LLM
|
8天前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
从零开始200行python代码实现LLM
|
30天前
|
数据采集 运维 API
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
把Postman调试脚本秒变Python采集代码的三大技巧
|
16天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
53 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
18天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
188 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
29天前
|
人工智能 数据库连接 API
掌握Python的高级用法:技巧、技术和实用性示例
本文分享了Python的高级用法,包括生成器、装饰器、上下文管理器、元类和并发编程等。生成器通过`yield`实现懒加载序列;装饰器用于增强函数功能,如添加日志或性能分析;上下文管理器借助`with`语句管理资源;元类动态定制类行为;并发编程利用`threading`和`asyncio`库提升任务执行效率。掌握这些高级概念可优化代码质量,解决复杂问题,提高程序性能与可维护性。

推荐镜像

更多