实时计算 Flink版产品使用问题之如何解决内存占用过大的问题

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC里 为啥cache会占用这么多内存? 怎么才能让他自动释放掉?

Flink CDC里 为啥cache会占用这么多内存? 怎么才能让他自动释放掉?



参考答案:

Apache Flink CDC(Change Data Capture)在处理数据流时可能会积累大量的内存,尤其是当捕获的数据量较大或处理过程中存在状态存储时。Flink CDC任务取消后,如果内存没有及时释放,可能是因为以下几个原因:

  1. 状态后置清理:
  • Flink在取消任务后,会异步清理task的状态,包括checkpoint状态和managed memory中的数据结构。这部分清理过程可能需要一定时间,并且在极端情况下,可能不会立即回收所有内存。
  1. 堆外内存(Off-heap Memory):
  • 如果Flink作业使用了堆外内存(例如 RocksDB状态后端),内存释放可能更加复杂,因为它不受JVM垃圾回收机制管理,需要Flink自身去释放这部分资源。
  1. 资源泄漏:
  • 如果存在资源泄露,如未能正确关闭网络连接、文件流或其他系统资源,可能导致内存无法正常释放。
  1. Flink内部缓存或队列:
  • CDC组件可能在内部维护了一些缓存或者队列,即便任务取消,这些结构如果没有被正确清空或关闭,也可能导致内存占用较高。

解决Flink CDC内存占用过大的问题,可以尝试以下措施:

  • 等待资源释放:给Flink一段合理的时间自行清理资源。
  • 检查和优化状态后端配置:确保状态后端配置合理,例如 RocksDB的配置,包括内存大小和checkpoint策略。
  • 确认作业终止后状态清理:如果使用了checkpoint,确保作业在停止后完成了checkpoint的清理工作。
  • 排查是否存在资源泄漏:审查代码和配置,确保所有资源在任务取消或失败时都能得到妥善清理和关闭。
  • 手动触发GC:在诊断阶段,可以尝试触发Java垃圾收集器来回收堆内存,但这不是长期解决方案。
  • 重启TaskManager或整个集群:在必要时,重启受影响的TaskManager或整个Flink集群可以彻底释放资源,但这应该是最后的手段,因为会导致服务中断。

总的来说,优化Flink CDC内存管理的关键在于合理配置和有效监控任务运行状态。如果问题持续存在,建议深入分析Flink的日志和监控指标,以便定位具体的问题根源。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592260



问题二:Flink CDC里目前社区版本cdc支持整库同步了么?

Flink CDC里目前社区版本cdc支持整库同步了么?source是PG,sink是hudi。 后面有计划支持么?



参考答案:

目前支持mysql整库同步到starrocks/doris。参考这个:

https://github.com/ververica/flink-cdc-connectors/issues/2861



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592246



问题三:Flink CDC里为什么使用yarn-session模式这样启用不了checkpoint吗?

Flink CDC里flink run -d -D yarn.application.id=application_xxxx -D execution.checkpointing.interval=60000,flink1.16版本为什么使用yarn-session模式这样启用不了checkpoint吗?



参考答案:

在 Apache Flink 1.16 版本中,在 YARN session 模式下运行 Flink 应用程序,并尝试通过 -D 参数设置 checkpoint 间隔,需要注意以下几点:

  1. YARN Session 和 Checkpoint 配置:
    在启动 yarn-session 模式时,你应该先创建一个持久化的 Flink YARN session,然后在提交作业时通过作业的 conf/flink-conf.yaml 或者直接在代码中指定 checkpoint 相关配置。不过,有时候也可以通过 Java API 或命令行参数临时覆盖部分配置项。
    -D execution.checkpointing.interval=60000 这种方式是在命令行上为作业指定自定义配置,但它是否能生效取决于 Flink 是否允许在运行时动态覆盖全局或作业级别的 checkpoint interval 设置。
  2. 正确设置 Checkpoint 间隔:
    如果要在命令行提交作业时设置 checkpoint 间隔,确保使用正确的配置键名,对于 checkpoint 间隔应该是:
-D jobmanager.checkpoints.interval=60000
  1. 而不是 execution.checkpointing.interval,虽然在某些版本中两者可能可以互换,但在不同版本间配置键名可能会有所差异。
  2. 配置生效范围:
    当你在 Flink 1.16 中通过 -D 参数设置 checkpoint 间隔时,确保这些参数是在提交作业到已经启动的 YARN session 时传递的,而不是在启动 yarn-session 本身时。这是因为启动 session 时不一定会处理作业级别的具体配置。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592243



问题四:在Flink-CDC整库同步时,若某表大量更新记录(如几千万条),是否会导致其他表同步出现延迟?

在Flink-CDC整库同步时,若某表大量更新记录(如几千万条),是否会导致其他表同步出现延迟?对于这种场景,除了提升资源配置和增加并行度,是否有其他解决方案?特别是在源端大批量修改数据时,如何避免影响到CDC任务中其他表的同步时效?



参考答案:

一般不会有这种场景吧,mysql修改完就得数个小时吧,你都不用考虑flinkcdc延不延迟。只要没太大事务基本延迟都很低,就像是mysql主从。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592240



问题五:flink cdc 每秒同步记录数 这个官方有相关压测 的文档吗?

flink cdc 每秒同步记录数 这个官方有相关压测 的文档吗?



参考答案:

参考本图,不完全是压测的场景,还要考虑下游数据写入能力,增量数据只有1个并行度等情况。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/592237

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
1月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
366 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3233 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
425 56
|
8月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
543 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
9月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
10月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
11月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
144 2
|
2月前
|
存储
阿里云轻量应用服务器收费标准价格表:200Mbps带宽、CPU内存及存储配置详解
阿里云香港轻量应用服务器,200Mbps带宽,免备案,支持多IP及国际线路,月租25元起,年付享8.5折优惠,适用于网站、应用等多种场景。
755 0
|
2月前
|
存储 缓存 NoSQL
内存管理基础:数据结构的存储方式
数据结构在内存中的存储方式主要包括连续存储、链式存储、索引存储和散列存储。连续存储如数组,数据元素按顺序连续存放,访问速度快但扩展性差;链式存储如链表,通过指针连接分散的节点,便于插入删除但访问效率低;索引存储通过索引表提高查找效率,常用于数据库系统;散列存储如哈希表,通过哈希函数实现快速存取,但需处理冲突。不同场景下应根据访问模式、数据规模和操作频率选择合适的存储结构,甚至结合多种方式以达到最优性能。掌握这些存储机制是构建高效程序和理解高级数据结构的基础。
214 0

相关产品

  • 实时计算 Flink版