实时计算 Flink版产品使用问题之如何启动多个jar包来监听同一个数据库的binlog,并针对不同的业务进行处理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flink cdc 3.0对切片key是字符串不能进行切分吗?

flink cdc 3.0对切片key是字符串不能进行切分吗?



参考答案:

source是复用原来的,你这个错误不是切分key的问题,是日期字段的异常



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584628



问题二:Flink CDC不使用Kafka,是否可以实现一次采集?

Flink CDC不使用Kafka,是否可以实现一次采集(所有城市,所有表,全增量一体化采集),然后多次分发(到多个库,多个消息队列)?



参考答案:

能 ,重新补一下数据



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584659



问题三:Flink CDC如果一个数据库,我启动多个jar包来监听binlog并处理不同的业务,应该如何配置

Flink CDC如果一个数据库,我启动多个jar包来监听binlog并处理不同的业务,应该如何配置?



参考答案:

可以看看flink-cdc的发展历史,在使用的企业,最新的3.0特性等

https://ververica.github.io/flink-cdc-connectors/



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584658



问题四:flink-cdc能不能用于线上 ?

flink-cdc能不能用于线上 ?



参考答案:

可以的



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584657



问题五:使用flink-cdc-2.4实时同步Oracle数据时,每天都会丢失数据。有人知道可能是什么情况吗

使用flink-cdc-2.4实时同步Oracle数据时,每天都会丢失数据。有人知道可能是什么情况吗?Oracle是在RAC环境下,而采集配置是在一台机器上进行的。



参考答案:

Flink CDC 2.4 实时同步 Oracle RAC 环境时,丢失数据的原因可能有很多。以下是一些可能导致数据丢失的常见原因:

  1. Flink CDC 配置不正确:请确保您的 Flink CDC 配置正确,包括数据库连接信息、表名、过滤条件等。
  2. 网络问题:如果 Flink CDC 和 Oracle RAC 之间的网络不稳定,可能会导致数据传输失败或延迟,从而导致数据丢失。
  3. Oracle RAC 的高可用性设置:如果您的 Oracle RAC 环境使用了高可用性设置(如 Data Guard),则可能会导致 Flink CDC 无法正确地捕获所有更改。在这种情况下,您需要调整 Oracle RAC 的配置以确保 Flink CDC 可以正确地捕获所有更改。
  4. Flink CDC 的资源限制:如果您的 Flink CDC 没有足够的资源来处理所有的数据更改,则可能会导致数据丢失。在这种情况下,您需要增加 Flink CDC 的资源限制。
  5. Flink CDC 的版本问题:如果您使用的是较旧版本的 Flink CDC,则可能会存在已知的问题或缺陷,导致数据丢失。在这种情况下,您可以尝试升级到最新版本的 Flink CDC。

针对采集配置的是一台的情况,建议使用多台采集节点来提高数据采集的效率和稳定性。同时,也需要确保采集节点之间的负载均衡和数据同步机制的正确性。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584656

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
8月前
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
6月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
481 61
|
9月前
|
存储 数据处理 Apache
超越传统数据库:揭秘Flink状态机制,让你的数据处理效率飞升!
【8月更文挑战第26天】Apache Flink 在流处理领域以其高效实时的数据处理能力脱颖而出,其核心特色之一便是状态管理机制。不同于传统数据库依靠持久化存储及 ACID 事务确保数据一致性和可靠性,Flink 利用内存中的状态管理和分布式数据流模型实现了低延迟处理。Flink 的状态分为键控状态与非键控状态,前者依据数据键值进行状态维护,适用于键值对数据处理;后者与算子实例关联,用于所有输入数据共享的状态场景。通过 checkpointing 机制,Flink 在保障状态一致性的同时,提供了更适合流处理场景的轻量级解决方案。
141 0
|
9月前
|
数据采集 Oracle 关系型数据库
实时计算 Flink版产品使用问题之怎么实现从Oracle数据库读取多个表并将数据写入到Iceberg表
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL Java 数据库连接
canal-starter 监听解析 storeValue 不一样,同样的sql 一个在mybatis执行 一个在数据库操作,导致解析不出正确对象
canal-starter 监听解析 storeValue 不一样,同样的sql 一个在mybatis执行 一个在数据库操作,导致解析不出正确对象
|
6月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
348 9
|
9月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用问题之Oracle数据库是集群部署的,怎么进行数据同步
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
9月前
|
存储 Java 关系型数据库
实时计算 Flink版产品使用问题之以jar包方式同步数据是否需要定义存储oss的位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
23天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
关系型数据库 MySQL Java
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库

相关产品

  • 实时计算 Flink版