【Flink on YARN + CDC 3.0】神操作!看完这篇教程,你也能成为数据流处理高手!从零开始,一步步教会你在Flink on YARN模式下如何配置Debezium CDC 3.0,让你的数据库变更数据瞬间飞起来!

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,基础系列 4核8GB
简介: 【8月更文挑战第15天】随着Apache Flink的普及,企业广泛采用Flink on YARN部署流处理应用,高效利用集群资源。变更数据捕获(CDC)工具在现代数据栈中至关重要,能实时捕捉数据库变化并转发给下游系统处理。本文以Flink on YARN为例,介绍如何在Debezium CDC 3.0中配置MySQL连接器,实现数据流处理。首先确保YARN上已部署Flink集群,接着安装Debezium MySQL连接器并配置Kafka Connect。最后,创建Flink任务消费变更事件并提交任务到Flink集群。通过这些步骤,可以构建出从数据库变更到实时处理的无缝数据管道。

随着Apache Flink的广泛应用,越来越多的企业开始采用Flink on YARN模式来部署流处理应用,以充分利用集群资源。而在现代数据栈中,变更数据捕获(Change Data Capture,简称CDC)工具扮演着重要角色,它能够实时捕捉数据库中的变化数据,并将其转发至下游系统进行处理。本文将以部署Flink on YARN为例,探讨如何在Debezium CDC 3.0中进行相关配置,以确保数据流处理的顺利进行。

首先,假设我们已经在YARN集群上成功部署了Flink集群。接下来,为了能够使用Debezium CDC 3.0来捕获数据库变更事件并将这些事件发送给Flink进行处理,我们需要进行一系列配置。

步骤一:安装Debezium

Debezium是一个开源的分布式平台,用于流式捕获数据库的变更事件。在正式使用之前,确保Debezium已经安装并且配置正确。Debezium支持多种数据库,如MySQL、PostgreSQL等。以MySQL为例,首先需要在MySQL服务器上安装Debezium连接器。

安装MySQL连接器

# 下载Debezium MySQL连接器
wget https://repo1.maven.org/maven2/io/debezium/debezium-connector-mysql/1.6.1.Final/debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 解压文件
tar -xzf debezium-connector-mysql-1.6.1.Final-plugin.tar.gz

# 将解压后的文件夹复制到Kafka Connect插件目录
sudo cp -r debezium-connector-mysql-1.6.1.Final /usr/share/kafka/plugins/

步骤二:配置Kafka Connect

Debezium通过Kafka Connect来捕获数据库的变更事件。因此,需要在Kafka Connect中添加Debezium连接器的配置。

配置Kafka Connect

name: mysql-debezium-source
config:
  connector.class: io.debezium.connector.mysql.MySqlSourceConnector
  tasks.max: 1
  database.hostname: localhost
  database.port: 3306
  database.user: debezium
  database.password: debezium
  database.server.id: 12345
  database.server.name: mydatabase
  database.whitelist: testdb
  database.history.kafka.bootstrap.servers: localhost:9092
  database.history.kafka.topic: schema-changes.testdb

步骤三:配置Flink任务

一旦Debezium连接器捕获到数据库的变更事件,下一步就是将这些事件导入Flink进行处理。这一步涉及到Flink任务的配置。

创建Flink任务

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;

public class FlinkDebeziumExample {
   

    public static void main(String[] args) throws Exception {
   
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
                .setBootstrapServers("localhost:9092")
                .setTopics("testdb.public.users")
                .setGroupId("flink-consumer-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStream<String> sourceStream = env.addSource(kafkaSource)
                .assignTimestampsAndWatermarks(WatermarkStrategy.<String>forMonotonousTimestamps().build());

        sourceStream.print();

        env.execute("Flink Debezium Example");
    }
}

步骤四:启动Flink任务

最后,确保Flink集群已启动,然后提交上述Flink任务。

# 编译项目
mvn clean package

# 提交Flink任务
flink run target/flink-debezium-example-1.0.jar

通过以上步骤,我们成功地在Debezium CDC 3.0中配置了MySQL连接器,并且创建了一个简单的Flink任务来消费从Debezium接收到的变更事件。这为构建实时数据管道提供了一个坚实的基础。在实际生产环境中,还需要根据具体需求进行更详细的配置调整,例如增加错误处理逻辑、数据转换等高级功能。

综上所述,通过合理配置Debezium和Flink,我们可以实现从数据库变更事件到实时数据处理的无缝衔接,进而构建出高效可靠的数据处理流程。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
5月前
|
Oracle 关系型数据库 Linux
【赵渝强老师】Oracle数据库配置助手:DBCA
Oracle数据库配置助手(DBCA)是用于创建和配置Oracle数据库的工具,支持图形界面和静默执行模式。本文介绍了使用DBCA在Linux环境下创建数据库的完整步骤,包括选择数据库操作类型、配置存储与网络选项、设置管理密码等,并提供了界面截图与视频讲解,帮助用户快速掌握数据库创建流程。
488 93
|
8月前
|
关系型数据库 MySQL 数据库连接
Django数据库配置避坑指南:从初始化到生产环境的实战优化
本文介绍了Django数据库配置与初始化实战,涵盖MySQL等主流数据库的配置方法及常见问题处理。内容包括数据库连接设置、驱动安装、配置检查、数据表生成、初始数据导入导出,并提供真实项目部署场景的操作步骤与示例代码,适用于开发、测试及生产环境搭建。
394 1
|
5月前
|
Ubuntu 安全 关系型数据库
安装与配置MySQL 8 on Ubuntu,包括权限授予、数据库备份及远程连接指南
以上步骤提供了在Ubuntu上从头开始设置、配置、授权、备份及恢复一个基础但完整的MySQL环境所需知识点。
581 7
|
5月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
910 5
|
11月前
|
关系型数据库 MySQL Java
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
|
11月前
|
数据库
【YashanDB知识库】数据库一主一备部署及一主两备部署时,主备手动切换方法及自动切换配置
【YashanDB知识库】数据库一主一备部署及一主两备部署时,主备手动切换方法及自动切换配置
【YashanDB知识库】数据库一主一备部署及一主两备部署时,主备手动切换方法及自动切换配置
|
10月前
|
安全 Linux 网络安全
YashanDB数据库服务端SSL连接配置
YashanDB支持通过SSL连接确保数据传输安全,需在服务端生成根证书、服务器证书及DH文件,并将根证书提供给客户端以完成身份验证。服务端配置包括使用OpenSSL工具生成证书、设置SSL参数并重启数据库;客户端则需下载根证书并正确配置环境变量与`yasc_env.ini`文件。注意:启用SSL后,所有客户端必须持有根证书才能连接,且SSL与密码认证独立运行。
|
8月前
|
安全 Java 数据库
Jasypt加密数据库配置信息
本文介绍了使用 Jasypt 对配置文件中的公网数据库认证信息进行加密的方法,以提升系统安全性。主要内容包括:1. 背景介绍;2. 前期准备,如依赖导入及版本选择;3. 生成密钥并实现加解密测试;4. 在配置文件中应用加密后的密码,并通过测试接口验证解密结果。确保密码安全的同时,保障系统的正常运行。
551 3
Jasypt加密数据库配置信息
|
7月前
|
SQL XML Java
配置Spring框架以连接SQL Server数据库
最后,需要集成Spring配置到应用中,这通常在 `main`方法或者Spring Boot的应用配置类中通过加载XML配置或使用注解来实现。
590 0

热门文章

最新文章